Mission
home

3.1 Geometry

Q1

Topic
3.1 Geometry
Tag
Source
N15-TZ0-P1-1(HL)
Question Text
The following diagram shows a sector of a circle where AO^B=xA \hat{O}B=x radians and the length of the arcAB=2x cm\operatorname{arc} A B=\frac{2}{x} \mathrm{~cm}. Given that the area of the sector is 54 cm254 \mathrm{~cm}^2, find the length of the arcAB\operatorname{arc} A B.
Total Mark
4
Correct Answer
6
Explanation
na
Mark Scheme
Step 1: Consider the given information Circle sector, arc length =2x=\frac{2}{x}, arc angle =x=x radians, sector area =54=54 Step 2: Combine the given information Sector area =x2π×πr2=54=\frac{x}{2 \pi} \times \pi r^2=54 Arc length =2x=rx=\frac{2}{x}=r x So, r=2x2r=\frac{2}{x^2} Applying this to the sector area x2π×πr2=2x3=54\frac{x}{2 \pi} \times \pi r^2=\frac{2}{x^3}=54 Giving, x=13x=\frac{1}{3}, arc length =6 cm=6 \mathrm{~cm} Answer: 6 cm

Q2

Topic
3.1 Geometry
Tag
Source
M15-TZ1-P1-1(HL)
Question Text
The logo, for a company that makes chocolate, is a sector of a circle of radius 5 cm , shown as shaded in the diagram. The area of the logo is 9π cm29 \pi \mathrm{~cm}^2.
Diagram not to scale (a) The value of the angle θ\theta in radians can be expressed as abπ\frac{a}{b} \pi where a and b are positive integers in lowest terms. Find the value of a+ba+b.
Total Mark
3
Correct Answer
57
Explanation
na
Mark Scheme
Area of shaded area 9π=52π52π×θ2π9 \pi=5^2 \pi-5^2 \pi \times \frac{\theta}{2 \pi} 25θ2=16πθ=3225π\begin{aligned} & \frac{25 \theta}{2}=16 \pi \\ & \theta=\frac{32}{25} \pi \end{aligned} Answer: 57
Question Text
(b) Find the total length of the perimeter of the logo. (A) 3π+53 \pi+5 (B) 3π+103 \pi+10 (C) 18π5+5\frac{18 \pi}{5}+5 (D) 18π5+10\frac{18 \pi}{5}+10
Total Mark
2
Correct Answer
D
Explanation
na
Mark Scheme
 arc length =1825π×5 perimeter =18π5+5×2=18π5π+10\begin{aligned} & \text { arc length }=\frac{18}{25} \pi \times 5 \\ & \text { perimeter }=\frac{18 \pi}{5}+5 \times 2 \\ & \quad=\frac{18 \pi}{5} \pi+10 \end{aligned} Answer: D

Q3

Topic
3.1 Geometry
Tag
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/3
Question Text
A sector of a circle with radius rcmr c m, where r>0r>0, has an angle of 2 radian at the centre. Let the area of the sector be A cm2A \mathrm{~cm}^2 and the perimeter be PPcm . Given that A=PA=P, find the value of rr.
Total Mark
4
Correct Answer
4
Explanation
na
Mark Scheme
A=P Area of sector =r2π×θ2π Perimeter =rθ+2r12r2(2)=r(2)+2rr24r=0r=4, as r>0\begin{array}{lc} & A=P \\ \text { Area of sector }=r^2 \pi \times \frac{\theta}{2 \pi} & \\ \text { Perimeter }=r \theta+2 r & \\ & \frac{1}{2} r^2(2)=r(2)+2 r \\ r^2-4 r=0 \\ & r=4, \text { as } r>0 \end{array} Answer: 4

Q4

Topic
3.1 Geometry
Tag
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/8
Question Text
A right circular cone of radius rr is inscribed in a sphere with centre OO and radius RR as shown in the following diagram. The perpendicular height of the cone is h,Xh, X denotes the centre of its base and B a point where the cone touches the sphere. Given that R=5,h=9R=5, h=9, and the value of VV can be written as aπa \pi where a is a positive integer, find the value of aa.
Total Mark
4
Correct Answer
27
Explanation
na
Mark Scheme
attempt to use Pythagoras in triangle OXBOXB r2=R2(hR)2=5242=32r^2=R^2-(h-R)^2=5^2-4^2=3^2 substitution of r2r^2 into formula for volume of cone V=πr2h3V=\frac{\pi r^2 h}{3} =π×9×93=27π=\frac{\pi \times 9 \times 9}{3}=27 \pi Answer: 27