Mission
home

Matrices and Vectors

Tags

System of Equations

Many math IA topics frequently involve setting up and solving large systems of equations (see: extension from topic 1: “Systematic approaches to reliably obtain solutions to large systems of equations with mm equations and nn unknown variables (in the HL syllabus, we typically worked with m3m ≤ 3, n3n ≤ 3)” Managing complex (linear) systems of equations that have a large number of equations and unknown variables requires the use of simplifying notation and standardizing procedures

Augmented Matrices

a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm\begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\\vdots \quad\quad \vdots \quad\quad &\vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m\end{align*}
[a11a12a1nb1a21a22a2nb2am1am2amnbm]\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\\vdots & \vdots & \ddots & \vdots & \vdots \\a_{m1} & a_{m2} & \cdots & a_{mn} & b_m\end{bmatrix}

Elementary Row Operations

Three types of algebraic operations can be performed on equations to produce a succession of increasingly simpler systems that have the same solution set as the original system
1.
Multiply an equation through by a nonzero constant
2.
Interchange two equations
3.
Add a multiple of one equation to another

Reduced Row Echelon Form (RREF)

Reducing the augmented matrix into a RREF allows us to directly “read off” the solution

Gauss-Jordan Elimination

Gauss Elimination (Forward Phase): uses the three aforementioned elementary row operations to introduce zeros below the leading 1’s. Jordan Elimination (Backward Phase): uses the three aforementioned elementary row operations to introduce zeros above the leading 1’s.

Applications of Linear Systems of Equations

GPS Systems

Produce four equations with four unknown variables, (x, y, z and t). The coordinates of a satellite’s position at different times can be used to find the satellite’s position as a function of time.
Satellite
Satellite Position
Time
1
(1.12, 2.10, 1.40)
1.06
2
(0.00, 1.53, 2.30)
0.56
3
(1.40, 1.12, 2.10)
1.16
4
(2.30, 0.00, 1.53)
0.75
(xx0)2+(yy0)2+(zz0)2=0.22(tt0)2(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=0.22(t-t_0)^2

Network Analysis

Using the conservation of flow (water, charge, vehicles), elaborate pipe/circuit/road systems can be designed and analyzed.

Balancing Chemical Equations

Set up a system of equations where the coefficients of elements in a chemical reaction are represented as unknown variables.

Geometric Transformations Using Matrices (AI-friendly)

Transformation Matrices

Operator
Rotation about the positive x-axis through an angle θ
Rotation about the positive y-axis through an angle θ
Rotation about the positive z-axis through an angle θ
Illustration
Standard Matrix
[1000cosθsinθ0sinθcosθ]\begin{bmatrix}1 & 0 & 0 \\0 & \cos\theta & -\sin\theta \\0 & \sin\theta & \cos\theta\end{bmatrix}
[cosθ0sinθ010sinθ0cosθ]\begin{bmatrix}\cos\theta & 0 & \sin\theta \\0 & 1 & 0 \\-\sin\theta & 0 & \cos\theta\end{bmatrix}
[cosθsinθ0sinθcosθ0001]\begin{bmatrix}\cos\theta & -\sin\theta & 0 \\\sin\theta & \cos\theta & 0 \\0 & 0 & 1\end{bmatrix}

Proof/ Derivation of Transformation Matrices

1.
Rotation about origin
2.
Reflection across line that makes an angle θ\theta with the xx-axis
3.
Orthogonal Projection onto a line

Composite Transformations

Rθ=[cosθsinθsinθcosθ]R_\theta=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}
Rotation about the origin through an angle θ\theta
Hθ=[cos2θsin2θsin2θcos2θ]H_\theta=\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}
Reflection about the line through the origin making an angle θ\theta with the positive xx-axis
Pθ=[cos2θsinθcosθsinθcosθsin2θ]P_\theta=\begin{bmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{bmatrix}
Orthogonal projection onto the line through the origin making an angle θ\theta with the positive xx-axis
The following theorem shows that the composition of two linear transformations is itself a linear transformation.
If T1:RnRkT_1:R^n\rightarrow R^k and T2:RkRmT_2:R^k\rightarrow R^m are both linear transformations, then (T2T1):RnRm(T_2\cdot T_1):R^n\rightarrow R^m is also a linear transformation,
Example 1: Composing Rotations in R2R^2
Let T1:R2R2T_1:R^2\rightarrow R^2 be the rotation about the origion of R2R^2 through the angle θ1\theta_1, and let T2:R2R2T_2:R^2\rightarrow R^2 be the rotation about the origin through the angle θ2\theta_2. The standard matrices for these rotations are
Rθ1=[cosθ1sinθ1sinθ1cosθ1]R_{\theta_1}=\begin{bmatrix} \cos \theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} and Rθ2=[cosθ2sinθ2sinθ2cosθ2]R_{\theta_2}=\begin{bmatrix} \cos \theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} (4)
The composition
(T2T1)(x)=T2(T1(x))(T_2\cdot T_1)(x)=T_2(T_1(x))
first rotates xx through the angle θ1\theta_1 and then rotates T1(x)T_1(x) through the angle θ2\theta_2, so the standard matrix for T2T1T_2\cdot T_1 should be
Rθ1+θ2=[cos(θ1+θ2)sin(θ1+θ2)sin(θ1+θ2)cos(θ1+θ2)]R_{\theta_1+\theta_2}=\begin{bmatrix} \cos (\theta_1+\theta_2) & -\sin(\theta_1+\theta_2) \\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2) \end{bmatrix} (5)
To confirm that this is so let us apply Formula (2). According to that formula the standard matrix T2T1T_2\cdot T_1 is
Rθ2Rθ1=[cosθ2sinθ2sinθ2cosθ2][cosθ1sinθ1sinθ1cosθ1]R_{\theta_2}R_{\theta_1}=\begin{bmatrix} \cos \theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \cos \theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix}
=[cosθ2cosθ1sinθ2sinθ1cosθ2sinθ1sinθ2cosθ1sinθ2cosθ1+cosθ2sinθ1sinθ2sinθ1+cosθ2cosθ1]=\begin{bmatrix} \cos \theta_2\cos\theta_1-\sin\theta_2\sin\theta_1 & -\cos\theta_2\sin\theta_1-\sin\theta_2\cos\theta_1 \\ \sin\theta_2\cos\theta_1+\cos\theta_2\sin\theta_1 & -\sin\theta_2\sin\theta_1+\cos\theta_2\cos\theta_1 \end{bmatrix}
=[cos(θ1+θ2)sin(θ1+θ2)sin(θ1+θ2)cos(θ1+θ2)]\begin{bmatrix} \cos (\theta_1+\theta_2) & -\sin(\theta_1+\theta_2) \\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2) \end{bmatrix}
which agrees with (5).
Example 2: Composing Reflections
By Formula (18) of Section 6.1, the matrices
Hθ1=[cos2θ1sin2θ1sin2θ1cos2θ1]H_{\theta_1}=\begin{bmatrix} \cos 2\theta_1 & \sin2\theta_1 \\ \sin2\theta_1 & -\cos2\theta_1 \end{bmatrix} and Hθ2=[cos2θ2sin2θ2sin2θ2cos2θ2]H_{\theta_2}=\begin{bmatrix} \cos 2\theta_2 & \sin2\theta_2 \\ \sin2\theta_2 & -\cos2\theta_2 \end{bmatrix}
represent reflections about lines through the origin of R2R^2 making angles of θ1\theta_1 and θ2\theta_2 with the xx-axis, respectively. Accordingly, if we first reflect about the line making the angle θ1\theta_1 and then about the line making the angle θ2\theta_2, then we obtain a linear operator whose standard matrix is
Hθ2Hθ1=[cos2θ2sin2θ2sin2θ2cos2θ2][cos2θ1sin2θ1sin2θ1cos2θ1]H_{\theta_2}H_{\theta_1}=\begin{bmatrix} \cos2 \theta_2 & \sin2\theta_2 \\ \sin2\theta_2 & -\cos2\theta_2 \end{bmatrix} \begin{bmatrix} \cos 2\theta_1 & \sin2\theta_1 \\ \sin2\theta_1 & -\cos2\theta_1 \end{bmatrix}
=[cos2θ2cos2θ1+sin2θ2sin2θ1cos2θ2sin2θ1sin2θ2cos2θ1sin2θ2cos2θ1cos2θ2sin2θ1sin2θ2sin2θ1+cos2θ2cos2θ1]=\begin{bmatrix} \cos 2\theta_2\cos2\theta_1+\sin2\theta_2\sin2\theta_1 & \cos2\theta_2\sin2\theta_1-\sin2\theta_2\cos2\theta_1 \\ \sin2\theta_2\cos2\theta_1-\cos2\theta_2\sin2\theta_1 & \sin2\theta_2\sin2\theta_1+\cos2\theta_2\cos2\theta_1 \end{bmatrix}
=[cos(2θ+2θ1)sin(2θ2+θ1)sin(2θ2+2θ1)cos(2θ2+2θ1)]=\begin{bmatrix} \cos (2\theta_+2\theta_1) & -\sin(2\theta_2+\theta_1) \\ \sin(2\theta_2+2\theta_1) & \cos(2\theta_2+2\theta_1) \end{bmatrix}
Comparing this matrix to the matrix RθR_\theta in formula (16) of Section 6.1, we see that this matrix represents a rotation about the origin through an angle of 2θ22θ12\theta_2-2\theta_1. Thus, we have shown that
Hθ2Hθ1=R2(θ2θ1)H_{\theta_2}H_{\theta_1}=R_{2(\theta_2-\theta_1)}
This results is illustrated in Figure 6.4.2.