Mission
home

3.2 Trigonometry

Q1

Topic
3.2 Trigonometry
Tag
Trigonometry; Sine; Cosine; Tangent; Area; Triangle; Sine rule; Cosine rule; True bearings; Angle; Radians; Degrees
Source
M16-TZ2-P1-9(HL)
Question Text
Consider the equation 3+1sinx+31cosx=42,0<x<π2\frac{\sqrt{3}+1}{\sin x}+\frac{\sqrt{3}-1}{\cos x}=4 \sqrt{2}, 0<x<\frac{\pi}{2}. Given that sin(5π12)=6+24\sin \left(\frac{5 \pi}{12}\right)=\frac{\sqrt{6}+\sqrt{2}}{4} and cos(5π12)=624\cos \left(\frac{5 \pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}. Select all possible answers for the equation for 0<x<π20<x<\frac{\pi}{2} (select all that apply) (a) 7π36\frac{7 \pi}{36} (b) π4\frac{\pi}{4} (c) 5π18\frac{5 \pi}{18} (d) π3\frac{\pi}{3} (e) 5π12\frac{5 \pi}{12}
Total Mark
7
Correct Answer
a,e
Explanation
na
Mark Scheme
24(31sinsinx+3+1coscosx)=2sin5π12sinx+cos5π12cosx=2sin5π12cosx+cos5π12sinxsinxcosx=2sin5π12cosx+cosπ12sinx=2sinxcosxsin(5π12+x)=sin2x5π12+x=2x or 5π12+x=π2xx=5π12 or x=7π36\begin{gathered} \frac{\sqrt{2}}{4}\left(\frac{\sqrt{3}-1}{\sin \sin x}+\frac{\sqrt{3}+1}{\cos \cos x}\right)=2 \\ \frac{\sin \frac{5 \pi}{12}}{\sin x}+\frac{\cos \frac{5 \pi}{12}}{\cos x}=2 \\ \frac{\sin \frac{5 \pi}{12} \cos x+\cos \frac{5 \pi}{12} \sin x}{\sin x \cos x}=2 \\ \sin \frac{5 \pi}{12} \cos x+\cos \frac{\pi}{12} \sin x=2 \sin x \cos x \\ \sin \left(\frac{5 \pi}{12}+x\right)=\sin 2 x \\ \frac{5 \pi}{12}+x=2 x \text { or } \frac{5 \pi}{12}+x=\pi-2 x \\ x=\frac{5 \pi}{12} \text { or } x=\frac{7 \pi}{36} \end{gathered} Answer: A, E

Q2

Topic
3.2 Trigonometry
Tag
Trigonometry; Sine; Cosine; Tangent; Area; Triangle; Sine rule; Cosine rule; True bearings; Angle; Radians; Degrees
Source
M15-TZ2-P1-6(HL)
Question Text
In triangle ABC,BC=3 cm,ABC^=θA B C, B C=3 \mathrm{~cm}, A \hat{B C}=\theta and BC^A=π3B \hat{C} A=\frac{\pi}{3}. (a) Find an expression for ABA B. (a) 3cosθ+sinθ\frac{3}{\cos \theta+\sin \theta} (b) 333cosθ+sinθ\frac{3 \sqrt{3}}{\sqrt{3} \cos \theta+\sin \theta} (c) 33cosθ+sinθ\frac{3}{\sqrt{3} \cos \theta+\sin \theta} (d) 333cosθ+sinθ\frac{3 \sqrt{3}}{\sqrt{3} \cos \theta+\sin \theta}
Total Mark
4
Correct Answer
d
Explanation
na
Mark Scheme
Any attempt to use sine rule ABsinπ3=3sin(2π3θ)AB=3×32sin2π3cosθcos2π3sinθ=3×3232cosθ+12sinθ=333cosθ+sinθ\begin{gathered} \frac{A B}{\sin \frac{\pi}{3}}=\frac{3}{\sin \left(\frac{2 \pi}{3}-\theta\right)} \\ A B=\frac{3 \times \frac{\sqrt{3}}{2}}{\sin \frac{2 \pi}{3} \cos \theta-\cos \frac{2 \pi}{3} \sin \theta} \\ =\frac{3 \times \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta}=\frac{3 \sqrt{3}}{\sqrt{3} \cos \theta+\sin \theta} \end{gathered} Answer: D
Question Text
(b) Given that ABA B has a minimum value, determine the value of θ\theta for which this occurs. [4] (a) π6\frac{\pi}{6} (b) π4\frac{\pi}{4} (c) π3\frac{\pi}{3} (d) π2\frac{\pi}{2}
Total Mark
4
Correct Answer
a
Explanation
na
Mark Scheme
Shortest distance from BB to ACA C is perpendicular to ACA C θ=π2π3=π6\theta=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6} Answer: A

Q3

Topic
3.2 Trigonometry
Tag
Trigonometry; Sine; Cosine; Tangent; Area; Triangle; Sine rule; Cosine rule; True bearings; Angle; Radians; Degrees
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/4
Question Text
The triangle ABCA B C is equilateral of side 4 cm . The point DD lies on [BC][B C] such that BD=1 cmB D=1 \mathrm{~cm}. If cosDA^C=abc\cos D\hat{A}C=\frac{a \sqrt{b}}{c} where aa and bb are positive integers in lowest terms and bb is a prime number, find the value of a+\mathrm{a}+ b+c\mathrm{b}+\mathrm{c}.
Total Mark
6
Correct Answer
44
Explanation
na
Mark Scheme
 DC = 3\text { DC = } 3 Using the cosine rule AD2=32+422×3×4×cos60AD2=13\begin{gathered} A D^2=3^2+4^2-2 \times 3 \times 4 \times \cos 60^{\circ} \\ A D^2=13 \end{gathered} Apply the cosine rule once more cosDA^C=AD2+AC2DC22×AD×AC=13+1692×13×4=5213=51326\cos D \hat{A} C=\frac{A D^2+A C^2-D C^2}{2 \times A D \times A C}=\frac{13+16-9}{2 \times \sqrt{13} \times 4}=\frac{5}{2 \sqrt{13}}=\frac{5 \sqrt{13}}{26} Answer: 44

Q4

Topic
3.2 Trigonometry
Tag
Trigonometry; Sine; Cosine; Tangent; Area; Triangle; Sine rule; Cosine rule; True bearings; Angle; Radians; Degrees
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/4
Question Text
The lengths of two of the sides in a triangle are 6 cm and 7 cm . Let θ\theta be the angle between the two given sides. The triangle has an area of 75 cm27 \sqrt{5} \mathrm{~cm}^2. (a) The value of sinθ\sin \theta can be written as ab\frac{\sqrt{a}}{b} where a and b are prime numbers. Find the value of a+b\mathrm{a}+\mathrm{b}.
Total Mark
7
Correct Answer
7
Explanation
na
Mark Scheme
75=12×6×7sinθsinθ=53\begin{gathered} 7 \sqrt{5}=\frac{1}{2} \times 6 \times 7 \sin \theta \\ \sin \theta=\frac{\sqrt{5}}{3} \end{gathered} Answer: 7
Question Text
(b) Select the two possible values for the length of the third side. (a) 222 \sqrt{2} (b) 323 \sqrt{2} (c) 525 \sqrt{2} (d) 130\sqrt{130} (e) 150\sqrt{150}
Total Mark
5
Correct Answer
b,d
Explanation
na
Mark Scheme
Let the third side be xx x2=52+722×5×7×cosθx^2=5^2+7^2-2 \times 5 \times 7 \times \cos \theta To find cosθ\cos \theta cosθ=±159=±23x2=52+722×6×7×23=25+4956=18x=18=32x2=52+72+2×6×7×23=25+49+56=130\begin{gathered} \cos \theta= \pm \sqrt{1-\frac{5}{9}}= \pm \frac{2}{3} \\ x^2=5^2+7^2-2 \times 6 \times 7 \times \frac{2}{3}=25+49-56=18 \\ x=\sqrt{18}=3 \sqrt{2} \\ x^2=5^2+7^2+2 \times 6 \times 7 \times \frac{2}{3}=25+49+56=\sqrt{130} \end{gathered} Answer: B, D