Mission
home

5.1 Introduction to Differentiation

Q1

Topic
5.1 Introduction to Differentiation
Tag
Differentiation, Limits, First principles
Source
M15-TZ1-P1-4(HL)
Question Text
Find the derivative of f(x)=2x3f(x)=2 x^3 using first principles (a) f(x)=6x3f^{\prime}(x)=6 x^3 (b) f(x)=3x2f^{\prime}(x)=3 x^2 (c) f(x)=6x2f^{\prime}(x)=6 x^2 (d) f(x)=2x2f^{\prime}(x)=2 x^2
Total Mark
3
Correct Answer
(c)
Explanation
n/a
Mark Scheme
limh0f(x+h)f(x)h=limh02(x+h)32x3hlimh02x3+3x2h+3xh2+h3x3h=limh023x2h+3xh2+h3hlimh02(3x2+3xh+h2)=6x2 \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)^3-2 x^3}{h} \\ \lim _{h \rightarrow 0} 2 \frac{x^3+3 x^2 h+3 x h^2+h^3-x^3}{h}=\lim _{h \rightarrow 0} 2 \frac{3 x^2 h+3 x h^2+h^3}{h} \\ \lim _{h \rightarrow 0} 2\left(3 x^2+3 x h+h^2\right)=6 x^2

Q2

Topic
5.1 Introduction to Differentiation
Tag
Differentiation, Limits, First principles
Source
N18/5/MATHL/HP2/ENG/TZ0/XX/5
Question Text
Differentiate from first principles the function f(x)=4x32xf(x)=4 x^3-2 x. (a) f(x)=12x22f^{\prime}(x)=12 x^2-2 (b) f(x)=x4x2f^{\prime}(x)=x^4-x^2 (c) f(x)=12x2f^{\prime}(x)=12 x^2 (d) f(x)=12x22x2f^{\prime}(x)=12 x^2-2 x^2
Total Mark
5
Correct Answer
(a)
Explanation
n/a
Mark Scheme
limh0f(x+h)f(x)h=limh0(4(x+h)32(x+h))(4x32x)h=limh04(x3+3x2h+3xh2+h3)2x2h4x3+2xh\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ =\lim _{h \rightarrow 0} \frac{\left(4(x+h)^3-2(x+h)\right)-\left(4 x^3-2 x\right)}{h} \\ =\lim _{h \rightarrow 0} \frac{4\left(x^3+3 x^2 h+3 x h^2+h^3\right)-2 x-2 h-4 x^3+2 x}{h} =limh012x2h+12xh2+4h32hh=\lim _{h \rightarrow 0} \frac{12 x^2 h+12 x h^2+4 h^3-2 h}{h} If we cancel hh, limh012x2+12xh+4h22=12x22\lim _{h \rightarrow 0} 12 x^2+12 x h+4 h^2-2=12 x^2-2