Mission
home

3.3 Trig functions and identities

Q1

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M16-TZ1-P1-3(HL)
Question Text
The curve y=asin(b(xc))+dy=a \sin (b(x-c))+d, where a,b,ca, b, c and dd are all positive constants. has a maximum point at (1,5)(1, 5) and a minimum point at (2,1)(2,1). (a) Write down the value of aa.
Total Mark
1
Correct Answer
2
Explanation
na
Mark Scheme
(a) As the amptiltude is 2 a=2a=2 Answer: 2
Question Text
(b) Write down the value of dd
Total Mark
1
Correct Answer
3
Explanation
na
Mark Scheme
The center yy-coordinate is, 5+12=3\frac{5+1}{2}=3 Answer: 3
Question Text
(c) Find the value of bb. (a) 1 (b) 2 (c) π\pi (d) 2π2 \pi
Total Mark
2
Correct Answer
c
Explanation
na
Mark Scheme
The period is 2 b=2π2=πb=\frac{2 \pi}{2}=\pi Answer: C
Question Text
(d) Find the smallest value of cc, given c>0c>0. (a) 0.5 (b) 1 (c) 1.5 (d) 2
Total Mark
2
Correct Answer
a
Explanation
na
Mark Scheme
y=0y=0 when x=0.5,1.5,2.5x=0.5,1.5,2.5 etc As the a sine curve has x=0,y=0x=0, y=0, the smallest value of cc is 0.5 (a rightward translation of 0.5 units) Answer: A

Q2

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
N16-TZ0-P1-9(HL)
Question Text
Solve the equation sin2x+cos2x=1sinx+cosx\sin 2 x+\cos 2 x=1-\sin x+\cos x for x[π,π]x \in[-\pi, \pi] (select all that apply). (a)3π4-\frac{3 \pi}{4} (b)π4-\frac{\pi}{4} (c)π6 \frac{\pi}{6} (d) π4\frac{\pi}{4} (e) 5π6\frac{5 \pi}{6}
Total Mark
7
Correct Answer
a,c,d,e
Explanation
na
Mark Scheme
Using the double angle formula 2sinxcosx+cos2xsin2x+sinxcosx1=02 \sin x \cos x+\cos ^2 x-\sin ^2 x+\sin x-\cos x-1=0 As cos2x+sin2x=1\cos ^2 x+\sin ^2 x=1 2sinxcosx2sin2x+sinxcosx=0(2sinx1)(cosxsinx)=0\begin{gathered} 2 \sin x \cos x-2 \sin ^2 x+\sin x-\cos x=0 \\ (2 \sin x-1)(\cos x-\sin x)=0 \end{gathered} So either 2sinx1=0 or cosx=sinxx=3π4,π6,π4,5π6\begin{aligned} & 2 \sin x-1=0 \text { or } \cos x=\sin x \\ & x=-\frac{3 \pi}{4}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{5 \pi}{6} \end{aligned} Answer: A, C, D, E

Q3

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M15-TZ2-P1-3(HL)
Question Text
Find all solutions to the equation tan2xtanx=0\tan 2 x-\tan x=0 where 0x<1800^{\circ} \leq x<180^{\circ}. (select all that apply) (a) 0 (b) 45 (c) 90 (d) 120 (e) 180
Total Mark
6
Correct Answer
a,b,e
Explanation
na
Mark Scheme
tan2xtanx=02tanx1tan2xtanx=0tan2xtanx=tanx(tanx1)=0tanx=0 or tanx1=0\begin{gathered} \tan 2 x-\tan x=0 \\ \frac{2 \tan x}{1-\tan ^2 x}-\tan x=0 \\ \tan ^2 x-\tan x=\tan x(\tan x-1)=0 \\ \tan x=0 \text { or } \tan x-1=0 \end{gathered} So x=0,45,180x=0,45,180 Answer: A, B, E

Q4

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/13b
Question Text
Use the double angle identity tan2θ=2tanθ1tan2θ\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta} to find the expression for tan3π8\tan \frac{3 \pi}{8} (a) 1+21+\sqrt{2} (b) 21\sqrt{2}-1 (c) 1+22\frac{1+\sqrt{2}}{2} (d) 212\frac{\sqrt{2}-1}{2}
Total Mark
4
Correct Answer
a
Explanation
na
Mark Scheme
tan3π4=2tan3π81tan23π8tan23π82tan3π81=0\begin{gathered} \tan \frac{3 \pi}{4}=\frac{2 \tan \frac{3 \pi}{8}}{1-\tan ^2 \frac{3 \pi}{8}} \\ \tan ^2 \frac{3 \pi}{8}-2 \tan \frac{3 \pi}{8}-1=0 \end{gathered}  let A=tan3π8\text { let } A=\tan \frac{3 \pi}{8} Solve A22A1=0A^2-2 A-1=0 A=1±2A=1 \pm \sqrt{2} 3π8\frac{3 \pi}{8} is a first quadrant angle and tan is positive in this quadrant, so tanπ8>0\tan \frac{\pi}{8}>0 tan3π8=1+2\tan \frac{3 \pi}{8}=1+\sqrt{2} Answer: A

Q5

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M14/5/MATHL/HP1/ENG/TZ1/X/5
Question Text
(a) Use the identity cos2θ=2cos2θ1\cos 2 \theta=2 \cos ^2 \theta-1 to find an expression for cos12x,0xπ\cos \frac{1}{2} x, 0 \leq x \leq \pi. (a) 1+cosx2-\sqrt{\frac{1+\cos x}{2}} (b) 1cosx2-\sqrt{\frac{1-\cos x}{2}} (c) 1+cosx2\sqrt{\frac{1+\cos x}{2}} (d) 1cosx2\sqrt{\frac{1-\cos x}{2}}
Total Mark
3
Correct Answer
c
Explanation
na
Mark Scheme
cosx=2cos212x1\cos x=2 \cos ^2 \frac{1}{2} x-1 Rearrange cos12x=±1+cosx2\cos \frac{1}{2} x= \pm \sqrt{\frac{1+\cos x}{2}} cos12x\cos \frac{1}{2} x is positive as 0xπ0 \leq x \leq \pi cos12x=1+cosx2\cos \frac{1}{2} x=\sqrt{\frac{1+\cos x}{2}} Answer: C
Question Text
(b) Find a similar expression for sin12x,0xπ\sin \frac{1}{2} x, 0 \leq x \leq \pi. (a) 1+cosx2-\sqrt{\frac{1+\cos x}{2}} (b) 1cosx2-\sqrt{\frac{1-\cos x}{2}} (c) 1+cosx2\sqrt{\frac{1+\cos x}{2}} (d) 1cosx2\sqrt{\frac{1-\cos x}{2}}
Total Mark
2
Correct Answer
d
Explanation
na
Mark Scheme
cos2θ=12sin2θcosx=12sin212xsin12x=1cosx2\begin{gathered} \cos 2 \theta=1-2 \sin ^2 \theta \\ \cos x=1-2 \sin ^2 \frac{1}{2} x \\ \sin \frac{1}{2} x=\sqrt{\frac{1-\cos x}{2}} \end{gathered} Answer: D

Q6

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M14/5/MATHL/HP1/ENG/TZ1/X/10
Question Text
The value of sin4x\sin 4 x can be expressed in the form apb-\frac{a \sqrt{p}}{b} where a,ba, b are positive integers in lowest terms and pp is a prime number. Give than sinx+cosx=12\sin x+\cos x=\frac{1}{2} find the value of a+b+pa+b+p
Total Mark
6
Correct Answer
18
Explanation
na
Mark Scheme
sinx+cosx=12(sinx+cosx)2=(12)2sin2x+2sinxcosx+cos2x=14\begin{gathered} \sin x+\cos x=\frac{1}{2} \\ (\sin x+\cos x)^2=\left(\frac{1}{2}\right)^2 \\ \sin ^2 x+2 \sin x \cos x+\cos ^2 x=\frac{1}{4} \end{gathered} Using 2sinxcosx=sin2x2 \sin x \cos x=\sin 2 x and sin2x+cos2x=1\sin ^2 x+\cos ^2 x=1 sin2x=34\sin 2 x=-\frac{3}{4} As sin4x=2sin2xcos2x\sin 4 x=2 \sin 2 x \cos 2 x, in order to find cos2x\cos 2 x sin22x+cos22x=1cos22x=716cos2x=74\begin{gathered} \sin ^2 2 x+\cos ^2 2 x=1 \\ \cos ^2 2 x=\frac{7}{16} \\ \cos 2 x=\frac{\sqrt{7}}{4} \end{gathered} So sin4x=2sin2xcos2x=2×(34)×74sin4x=378\begin{gathered} \sin 4 x=2 \sin 2 x \cos 2 x=2 \times\left(-\frac{3}{4}\right) \times \frac{\sqrt{7}}{4} \\ \sin 4 x=-\frac{3 \sqrt{7}}{8} \end{gathered} Answer: 18

Q7

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
Question Text
Solve y=cosx2=32y=\left|\cos \frac{x}{2}\right|=\frac{\sqrt{3}}{2} for 0x4π0 \leq x \leq 4 \pi (select all that apply). (a) π3\frac{\pi}{3} (b) 2π3\frac{2 \pi}{3} (c) 5π3\frac{5 \pi}{3} (d) 7π3\frac{7 \pi}{3} (e) 11π3\frac{11 \pi}{3}
Total Mark
3
Correct Answer
a,c,d,e
Explanation
na
Mark Scheme
cosx4=32cosx2=32 or 32x2=π6,5π6,7π6,11π6x=π3,5π3,7π3,11π3\begin{gathered} \left|\cos \frac{x}{4}\right|=\frac{\sqrt{3}}{2} \\ \cos \frac{x}{2}=\frac{\sqrt{3}}{2} \text { or }-\frac{\sqrt{3}}{2} \\ \frac{x}{2}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \\ x=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3} \end{gathered} Answer: A, C, D, E

Q8

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
N13-TZ0-P1-8(HL)
Question Text
(a) Find an expression for cos(x+y)cos(xy)\cos (x+y) \cos (x-y) (a) cos2xsin2y\cos ^2 x-\sin ^2 y (b) sin2xsin2y\sin ^2 x-\sin ^2 y (c) cos2xcos2y\cos ^2 x-\cos ^2 y (d) sin2xcos2y\sin ^2 x-\cos ^2 y
Total Mark
4
Correct Answer
a
Explanation
na
Mark Scheme
cos(x+y)cos(xy)=(cosxcosysinxsiny)(cosxcosy+sinxsiny)\cos (x+y) \cos (x-y)=(\cos x \cos y-\sin x \sin y)(\cos x \cos y+\sin x \sin y) Utilizing the pythagorean identity cos2xcos2ysin2xsin2y=cos2xcos2y(1cos2x)(1cos2y)cos2x+cos2y1=cos2xsin2y\begin{gathered} \cos ^2 x \cos ^2 y-\sin ^2 x \sin ^2 y=\cos ^2 x \cos ^2 y-\left(1-\cos ^2 x\right)\left(1-\cos ^2 y\right) \\ \cos ^2 x+\cos ^2 y-1=\cos ^2 x-\sin ^2 y \end{gathered} Answer: A
Question Text
(b) Given f(x)=cos(x+π6)cos(xπ6),x[0,π]f(x)=\cos \left(x+\frac{\pi}{6}\right) \cos \left(x-\frac{\pi}{6}\right), x \in[0, \pi], find the range of ff. (a) [0,π][0, \pi] (b) [π6,5π6]\left[-\frac{\pi}{6}, \frac{5 \pi}{6}\right] (c) [34,14]\left[-\frac{3}{4}, \frac{1}{4}\right] (d) [14,34]\left[-\frac{1}{4}, \frac{3}{4}\right]
Total Mark
2
Correct Answer
d
Explanation
na
Mark Scheme
f(x)=cos2xsin2(π6)=cos2x14f(x)=\cos ^2 x-\sin ^2\left(\frac{\pi}{6}\right)=\cos ^2 x-\frac{1}{4} Answer: D range is f[14,34]f \in\left[-\frac{1}{4}, \frac{3}{4}\right]

Q9

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M13-TZ1-P1-11(HL)
Question Text
(a) Consider the value of sin(π6+x)\sin \left(\frac{\pi}{6}+x\right). If the solution of cosx+3sinx=1\cos x+\sqrt{3} \sin x=1 for 0xπ20 \leq x \leq \frac{\pi}{2} can be written as aπb\frac{a \pi}{b} where aa and bb are positive integers in lowest terms. Find the value of a+ba+b.
Total Mark
7
Correct Answer
4
Explanation
na
Mark Scheme
sin(π6+x)=sin(π6)cosx+cos(π6)sinx12cosx+32sinx=12(cosx+3sinx)\begin{aligned} & \sin \left(\frac{\pi}{6}+x\right)=\sin \left(\frac{\pi}{6}\right) \cos x+\cos \left(\frac{\pi}{6}\right) \sin x \\ & \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\frac{1}{2}(\cos x+\sqrt{3} \sin x) \end{aligned} Therefore, sin(π6+x)=12x=π3\begin{gathered} \sin \left(\frac{\pi}{6}+x\right)=\frac{1}{2} \\ x=\frac{\pi}{3} \end{gathered} Answer: 4
Question Text
(b) Given that sin2θsinθ+3cos2θ=3\sin 2 \theta \sin \theta+3 \cos ^2 \theta=3 for 0θ2π0 \leq \theta \leq 2 \pi, by using the substitution cosθ=x\cos \theta=x, find all solutions of the value of xx. (select all the apply). (a) -1 (b) 1 (c) 12\frac{1}{2} (d) 62-\frac{\sqrt{6}}{2} (e) 62\frac{\sqrt{6}}{2}
Total Mark
5
Correct Answer
b,d,e
Explanation
na
Mark Scheme
2sinθcosθsinθ+sin2θ=2cosθ(1cos2θ)+3cos2θ2cosθ2cos3θ+3cos2θ=32cos3θ2cos2θ3cosθ+3=0\begin{gathered} 2 \sin \theta \cos \theta \sin \theta+\sin ^2 \theta=2 \cos \theta\left(1-\cos ^2 \theta\right)+3 \cos ^2 \theta \\ 2 \cos \theta-2 \cos ^3 \theta+3 \cos ^2 \theta=3 \\ 2 \cos ^3 \theta-2 \cos ^2 \theta-3 \cos \theta+3=0 \end{gathered} 2x32x23x+3=02 x^3-2 x^2-3 x+3=0 Noticing that x=1x=1 is a valid solution, (x1)(2x23)(x-1)(2 x^2-3) Thus, x=1,62,62x=1, \frac{\sqrt{6}}{2},-\frac{\sqrt{6}}{2} Answer: B, D, E

Q10

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M13-TZ2-P1-10(HL)
Question Text
(a) Given that arctan(17)arctan(19)=arctan(1p)\arctan \left(\frac{1}{7}\right)-\arctan \left(\frac{1}{9}\right)=\arctan \left(\frac{1}{p}\right), where pZ+p \in Z^{+}, find pp.
Total Mark
3
Correct Answer
31
Explanation
na
Mark Scheme
Use of tan(AB)=tan(A)tan(B)1+tan(A)tan(B)\tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)} 1p=1719117×19=2/6362/63=131\frac{1}{p}=\frac{\frac{1}{7}-\frac{1}{9}}{1-\frac{1}{7} \times \frac{1}{9}}=\frac{2 / 63}{62 / 63}=\frac{1}{31} Answer: 31
Question Text
(b) Hence given that arctan(17)+arctan(18)arctan(19)=arctan(ab)\arctan \left(\frac{1}{7}\right)+\arctan \left(\frac{1}{8}\right)-\arctan \left(\frac{1}{9}\right)=\arctan \left(\frac{a}{b}\right) where a and b are positive integers in lowest terms, find the value of a+ba+b
Total Mark
3
Correct Answer
22
Explanation
na
Mark Scheme
Use of tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)} arctan(17)+arctan(18)arctan(19)=arctan(131)+arctan(18)131+181131×18=39/248247/248=319\begin{gathered} \arctan \left(\frac{1}{7}\right)+\arctan \left(\frac{1}{8}\right)-\arctan \left(\frac{1}{9}\right)=\arctan \left(\frac{1}{31}\right)+\arctan \left(\frac{1}{8}\right) \\ \frac{\frac{1}{31}+\frac{1}{8}}{1-\frac{1}{31} \times \frac{1}{8}}=\frac{39 / 248}{247 / 248}=\frac{3}{19} \end{gathered} Answer: 22

Q11

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/9
Question Text
Find an expression for csc2x+cot2x\csc 2 x+\cot 2 x. (a) cotx\cot x (b) 1sinx+cosx\frac{1}{\sin x+\cos x} (c) sinx+cosxsinxcosx\frac{\sin x+\cos x}{\sin x-\cos x} (d) sinxcosxsinx+cosx\frac{\sin x-\cos x}{\sin x+\cos x}
Total Mark
4
Correct Answer
a
Explanation
na
Mark Scheme
csc2x+cot2x=1sin2x+cos2xsin2x=1+cos2xsin2x\csc 2 x+\cot 2 x=\frac{1}{\sin 2 x}+\frac{\cos 2 x}{\sin 2 x}=\frac{1+\cos 2 x}{\sin 2 x} Using the double angle identities 1+cos2xsin2x=2cos2x2sinxcosx=cosxsinx=cotx\frac{1+\cos 2 x}{\sin 2 x}=\frac{2 \cos ^2 x}{2 \sin x \cos x}=\frac{\cos x}{\sin x}=\cot x Answer: A

Q12

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
N18/5/MATHL/HP1/ENG/TZ0/XX/3
Question Text
Consider the function g(x)=3cosx+2,axπ2g(x)=3 \cos x+2, a \leq x \leq \frac{\pi}{2} where a<π2a<\frac{\pi}{2}. By considering the sketched graph of g(x)g(x) when a=π2a=-\frac{\pi}{2} write down the least value of aa such that gg has an inverse.
Total Mark
3
Correct Answer
0
Explanation
na
Mark Scheme
The sketch graph looks like the following
Mark Scheme
As the inverse function can only have one value of $y$ for each value of $x, a=0$ Answer: 0

Q13

Topic
3.3 Trig functions and identities
Tag
Trigonometry; Trigonometric functions; Sine; Cosine; Tangent; Triangle; Radians; Degrees; Period; Amplitude; Principal axis; Inverse; Trigonometric identities; Angle; Reciprocal
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/3
Question Text
Let f(x)=cot(πx)cos(xπ2)f(x)=\cot (\pi-x) \cos \left(x-\frac{\pi}{2}\right) where 0<x<π20<x<\frac{\pi}{2}. Express f(x)f(x) in terms of sinx\sin x and cosx\cos x. (a) cosx\cos x (b) cosx-\cos x (c) cosxsinx\cos x-\sin x (d) sinxcosx\sin x-\cos x
Total Mark
4
Correct Answer
b
Explanation
na
Mark Scheme
\cot(πx)cos(xπ2)=cotxsinx=cosxcot (\pi-x) \cos \left(x-\frac{\pi}{2}\right)=-\cot x \sin x=-\cos x Answer: B