Mission
home

5.2 Properties of Curves

Q1

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Functions
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/7
Question Text
The folium of Descartes is a curve defined by the equation x3+y33xy=0x^3+y^3-3 x y=0, shown in the following diagram.
Question Text
The coordinates of the point on the curve where the tangent line is parallel to the xx -axis can be written in the form (a3,b3)(\sqrt[3]{a}, \sqrt[3]{b}) where a,bZ+a, b \in Z^{+}. Find the value of aa.
Total Mark
6
Correct Answer
2
Explanation
n/a
Mark Scheme
Tip 2: Parallel to the xx-axis means a slope of 00. Taking the derivative, 3x2+3y2dydx3xdydx3y=03 x^2+3 y^2 \frac{d y}{d x}-3 x \frac{d y}{d x}-3 y=0 dydx=3y3x23y23x3y3x2=0,y=x2\frac{d y}{d x}=\frac{3 y-3 x^2}{3 y^2-3 x} \\ 3 y-3 x^2=0, y=x^2 Tip 2: Find a way to use the information found In this case y=x2y=x^2 can be applied to x3+y33xy=0x^3+y^3-3 x y=0 So, x3+x63x3=x3(x32)=0x^3+x^6-3 x^3=x^3\left(x^3-2\right)=0 The coordinates can be written as (a3,b3)(\sqrt[3]{a}, \sqrt[3]{b}) where a,bZ+a, b \in Z^{+}, so x=23x=\sqrt[3]{2}

Q2

Topic
5.2 Properties of Curves
Tag
Differentiation, Trigonometric functions, Quotient Rule
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/11
Question Text
The function fn(x)=(cos2x)(cos4x)(cos2nx),nZ+f_n(x)=(\cos 2 x)(\cos 4 x) \ldots\left(\cos 2^n x\right), n \in Z^{+} can be written as fn(x)=sin2n+1x2nsin2x,xmπ2f_n(x)=\frac{\sin 2^{n+1} x}{2^n \sin 2 x}, x \neq \frac{m \pi}{2} where mZm \in Z (a)Find an expression for the derivative of fn(x)f_n(x) with respect to xx. (a) fn(x)=(2nsin2x)(2n+1cos2n+1x)(sin2n+1x)(2n+1cos2x)(2nsin2x)2f_n^{\prime}(x)=\frac{\left(2^n \sin 2 x\right)\left(2^{n+1} \cos 2^{n+1} x\right)-\left(\sin 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^n \sin 2 x\right)^2} (b) fn(x)=(2nsin2x)(cos2n+1x)+(sin2n+1x)(2n+1cos2x)(22sin2x)2f_n^{\prime}(x)=\frac{\left(2^n \sin 2 x\right)\left(\cos 2^{n+1} x\right)+\left(\sin 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^2 \sin 2 x\right)^2} (c) fn(x)=(2nsin2x)(2n+1sin2n+1x)(cos2n+1x)(2n+1cos2x)(22sin2x)2f_n^{\prime}(x)=\frac{\left(2^n \sin 2 x\right)\left(2^{n+1} \sin 2^{n+1} x\right)-\left(\cos 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^2 \sin 2 x\right)^2} (d) fn(x)=(2nsin2x)(2n+1cos2nx)(sin2n+1x)(2n+1cos2x)(2nsin2x)2f_n^{\prime}(x)=\frac{\left(2^n \sin 2 x\right)\left(2^{n+1} \cos 2^n x\right)-\left(\sin 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^n \sin 2 x\right)^2}
Total Mark
3
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Utilize the quotient rule, fn(x)=(2nsin2x)(2n+1cos2n+1x)(sin2n+1x)(2n+1cos2x)(2nsin2x)2f_n^{\prime}(x)=\frac{\left(2^n \sin 2 x\right)\left(2^{n+1} \cos 2^{n+1} x\right)-\left(\sin 2^{n+1} x\right)\left(2^{n+1} \cos 2 x\right)}{\left(2^n \sin 2 x\right)^2}
Question Text
(b) For n>1n>1, the equation of the tangent to the curve y=fn(x)y=f_n(x) at x=π4x=\frac{\pi}{4} is ax2yπ=0ax -2 y-\pi=0, where aZ+a \in \mathbb{Z}^{+} Find the value of a a
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
The slope of the equation ax2yπ=0a x-2 y-\pi=0 is a2\frac{a}{2}, fn(π4)=(2nsinπ2)(2n+1cos2n+1π4)(sin2n+1π4)(2n+1cosπ2)(2nsinπ2)2f_n^{\prime}\left(\frac{\pi}{4}\right)=\frac{\left(2^n \sin \frac{\pi}{2}\right)\left(2^{n+1} \cos 2^{n+1} \frac{\pi}{4}\right)-\left(\sin 2^{n+1} \frac{\pi}{4}\right)\left(2^{n+1} \cos \frac{\pi}{2}\right)}{\left(2^n \sin \frac{\pi}{2}\right)^2} fn(π4)=(2n)(2n+1cos2n+1π4)(2n)2f_n^{\prime}\left(\frac{\pi}{4}\right)=\frac{\left(2^n\right)\left(2^{n+1} \cos 2^{n+1} \frac{\pi}{4}\right)}{\left(2^n\right)^2} \\ fn(π4)=2cos2n+1π2f_n^{\prime}\left(\frac{\pi}{4}\right)=2 \cos 2^{n+1} \frac{\pi}{2} As cos2n+1π2=cos2n12π\cos 2^{n+1} \frac{\pi}{2}=\cos 2^{n-1} 2 \pi, for n>1n>1 fn(π4)=2f_n^{\prime}\left(\frac{\pi}{4}\right)=2 So, 2=a22=\frac{a}{2} a=4a=4

Q3

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Functions Graphs Intercepts
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/12 e
Question Text
Consider the function q(x)=x510x2+10x1,xRq(x)=x^5-10 x^2+10 x-1, x \in R. (i) The graph of y=q(x)y=q(x) is concave up for x>ax>a where aa is a positive integer. Compute the value of aa Total Mark: 3 Correct Answer: 1 Explanation: n/a Mark Scheme: d2ydx2=20x320When x>1,20x320>0\frac{d^2 y}{d x^2} =20 x^3-20 \\ \text {When } x >1,20 x^3-20>0 (ii) Find the xx-coordinate of the xx-intercept of the equation y=q(x)y = q(x) Total Mark: 3 Correct Answer: 1 Explanation: n/a Mark Scheme: by comparing coefficients, xx-intercept at (1,0)(1,0)

Q4

Topic
5.2 Properties of Curves
Tag
Differentiation Implicit differentiation Exponential and Logarithmic functions Differentiation Tangent Intercepts Exponential and Logarithmic functions
Source
N16-TZ0-P1-9(HL)
Question Text
A curve has equation 3xy2e2x=23 x-y^2 e^{2 x}=2. (a) Which is the correct expression for dydx\frac{d y}{d x}? (a) dydx=3+2y3e2x2y2\frac{d y}{d x}=\frac{3+2 y^3 e^{2 x}}{2 y^2} (b) dydx=3x2y3e2x2y\frac{d y}{d x}=\frac{3 x-2 y^3 e^{2 x}}{2 y} (c) dydx=32y2e2x2y\frac{d y}{d x}=\frac{3-2 y^2 e^{2 x}}{2 y} (d) dydx=3y3e2x2y2\frac{d y}{d x}=\frac{3-y^3 e^{2 x}}{2 y^2}
Total Mark
4
Correct Answer
(c)
Explanation
n/a
Mark Scheme
Implicit differentiation, 3(2ydydx+2y2)e2x=0dydx=32y2e2x2y3-\left(2 y \frac{d y}{d x}+2 y^2\right) e^{2 x}=0 \\ \frac{d y}{d x}=\frac{3-2 y^2 e^{2 x}}{2 y}
Question Text
(b) Select the correct slopes of the equations of tangents to this curve at the points where the curve intersects the line x=1x = 1. (select all that apply) (a) 12\frac12 (b) 12\frac{-1}2 (c) e2\frac e2 (d) e2\frac{-e}2 (e) ee
Total Mark
4
Correct Answer
(c), (d)
Explanation
n/a
Mark Scheme
3y2e2=2y2e2=1y=±1e3-y^2 e^2=2 \\ y^2 e^2=1 \\ y= \pm \frac{1}{e} 32(1e)2e22(1e)=e232(1ε)2e22(1ε)=e2\frac{3-2\left(\frac{1}{e}\right)^2 e^2}{2\left(\frac{1}{e}\right)}=\frac{e}{2} \\ \frac{3-2\left(-\frac{1}{\varepsilon}\right)^2 e^2}{2\left(-\frac{1}{\varepsilon}\right)}=-\frac{e}{2}

Q5

Topic
5.2 Properties of Curves
Tag
Differentiation, Tangent
Source
M16-TZ1-P1-10(HL)
Question Text
Select the xx-coordinates of all the points on the curve y=x4+43x3132x2+7x+16y=x^4+\frac{4}{3} x^3-\frac{13}{2} x^2+7 x+\frac{1}{6} at which the tangent to it is parallel to the tangent at the coordinates (1,3)(1,3). (select all that apply) (a) -2.5 (b) -1 (c) 0.5 (d) 1 (e) 1.5
Total Mark
7
Correct Answer
(a), (c)
Explanation
n/a
Mark Scheme
dydx=4x3+4x213x+7\frac{d y}{d x}=4 x^3+4 x^2-13 x+7 when x=1,dydx=2x=1, \frac{d y}{d x}=2 4(1)3+4(1)213(1)+7=24x3+4x213x+5=04(1)^3+4(1)^2-13(1)+7=2 \\ 4 x^3+4 x^2-13 x+5=0 Since x=1x=1 is a solution to this equation, (x1)(x-1) is one factor (x1)(2x1)(2x+5)=0(x-1)(2 x-1)(2 x+5)=0 Thus, x=0.5,x=2.5x=0.5, x=-2.5

Q6

Topic
5.2 Properties of Curves
Tag
Source
N15-TZ0-P1-4(HL)
Question Text
Consider the curve y=12x,xR,x2y=\frac{1}{2-x}, x \in R, x \neq 2. (a) Find dydx\frac{d y}{d x}. (a) dydx=ln(2x)\frac{d y}{d x}=\ln (2-x) (b) dydx=ln(2x)\frac{d y}{d x}=-\ln (2-x) (c) dydx=1(2x)2\frac{d y}{d x}=\frac{1}{(2-x)^2} (d) dydx=1(2x)2\frac{d y}{d x}=-\frac{1}{(2-x)^2}
Total Mark
2
Correct Answer
(c)
Explanation
n/a
Mark Scheme
dydx=(1)(1)(2x)2=1(2x)2\frac{d y}{d x}=(-1)(-1)(2-x)^{-2}=\frac{1}{(2-x)^2}
Question Text
(b) The equation of the normal to the curve at the point x=1x = 1 can be written in the form ax+by+c=0ax + by + c = 0 where a,b,cZa,b,c ∈ Z. Find the value of a+b+ca + b + c.
Total Mark
4
Correct Answer
0
Explanation
n/a
Mark Scheme
Slope of tangent at x=1x=1 1(21)2=1\frac{1}{(2-1)^2}=1 Slope of normal is 1- 1 As the normal passes through the coordinates (1,1)(1,1) y1=(x1)y+x2y-1=-(x-1) \\ y+x-2

Q7

Topic
5.2 Properties of Curves
Tag
Differentiation, Tangent, Implicit differentiation Differentiation, Tangent, Implicit differentiation
Source
N15-TZ0-P1-7(HL)
Question Text
A curve is defined by xy=y2+9x y=y^2+9. (a) Find the number of horizontal tangents to the curve. (a) 0 (b) 1 (c) 2 (d) 4
Total Mark
4
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Implicit differentiation, xdydx+y=2ydydxdydx=y2yxx \frac{d y}{d x}+y=2 y \frac{d y}{d x} \\ \frac{d y}{d x}=\frac{y}{2 y-x} Horizontal tangent occurs when dydx=0\frac{d y}{d x}=0 so y=0y=0 Thus, x(0)=(0)2+9x(0)=(0)^2+9 However, as 0=90=9 is not possible there are no horizontal tangents
Question Text
(b) Select the coordinates of the points where the tangent to the curve is vertical. (select all that apply) (a) (3,6)(3,6) (b) (3,6)(-3, -6) (c) (6,3)(6, 3) (d) (1,9)(1, 9) (e) (1,9)(-1, -9)
Total Mark
4
Correct Answer
(a), (b)
Explanation
n/a
Mark Scheme
The tangent is vertical when 2y=x2 y=x dydx=y2yx\frac{d y}{d x}=\frac{y}{2 y-x} Substitute into the equation, 2y2=y2+9y=±32 y^2 =y^2+9 \\ y = \pm 3 Coordinates are, (3,6)(3,6)(3,6)(-3,-6)

Q8

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Functions Graphs Intercepts
Source
M15-TZ2-P1-4(HL)
Question Text
Consider the function defined by f(x)=x36x2+20f(x)=x^3-6 x^2+20. (a) The values of xx for which f(x)f(x) is a decreasing function can be written as a<x<ba<x<b where a,bZa, b \in Z. Find the value of a+ba+b
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
Differentiate f(x)=x36x2+4f(x)=x^3-6 x^2+4 f(x)=3x212x=3x(x4)x=0,x=4f^{\prime}(x)=3 x^2-12 x=3 x(x-4) \\ x=0, x=4 So ff decreasing on 0<x<40<x<4
Question Text
(b) There is a point of inflexion, PP, on the curve y=f(x)y = f(x). The coordinates of PP can be written as (c,d)(c, d). Find the value of c+dc + d.
Total Mark
3
Correct Answer
6
Explanation
n/a
Mark Scheme
f(x)=6x12f^{\prime \prime}(x)=6 x-12 To find the point of inflexion set f(x)=0f^{\prime \prime}(x)=0 6x12=0x=26 x-12=0 \\ x=2 Coordinate of PP is (2,4)(2,4)

Q9

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Logarithmic Functions Graphs Intercepts
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/11c
Question Text
The function gg is defined as g(x)=ln(x1),xR+g(x)=\ln (x-1), x \in R^{+}. The graph of y=g(x)y=g(x) intersects the xx-axis at the point QQ. The equation of the tangent TT to the graph of y=g(x)y=g(x) at the point QQ can be written as. yax+b=0y-a x+b=0, where a,bZ+a, b \in Z^{+}. Find the value of a+ba+b
Total Mark
4
Correct Answer
3
Explanation
n/a
Mark Scheme
ln(x1)=0x=2\ln (x-1)=0 \\ x=2 xx-intercept at (2,0)(2,0) dydx=1x1=121=1y=x2yx+2=0\frac{d y}{d x}=\frac{1}{x-1}=\frac{1}{2-1}=1 \\ y=x-2 \\ y-x+2=0

Q10

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Logarithmic Functions Graphs Intercepts Implicit Differentiation
Source
M14/5/MATHL/HP1/ENG/TZ1/X/9
Question Text
A curve has equation arctany2arctanx2=π4\operatorname{arctany}^2-\arctan x^2=\frac{\pi}{4}. The gradient of the curve at the point where x=13x=\frac{1}{\sqrt{3}} and y<0y<0 can be written as 3a4\frac{3 \sqrt{a}}{4} where aa is a positive integer. Find the value of aa.
Total Mark
8
Correct Answer
6
Explanation
N/A
Mark Scheme
2y1+y4dydx2x1+x4=0dydx=x(1+y4)y(1+x4)\begin{gathered} \frac{2 y}{1+y^4} \frac{d y}{d x}-\frac{2 x}{1+x^4}=0 \\ \frac{d y}{d x}=\frac{x\left(1+y^4\right)}{y\left(1+x^4\right)} \end{gathered} In order to find the coordinate at x=13x=\frac{1}{\sqrt{3}} arctany2arctan(13)=π4arctany2=π4+arctan(13)y2=tan(π4+arctan(13))=tanπ4+tan(arctan13)1(tanπ4)(tan(arctan13))=1+1311×13=2\begin{aligned} & \operatorname{arctany}^2-\arctan \left(\frac{1}{3}\right)=\frac{\pi}{4} \\ & \operatorname{arctany}^2=\frac{\pi}{4}+\arctan \left(\frac{1}{3}\right) \\ & y^2=\tan \left(\frac{\pi}{4}+\arctan \left(\frac{1}{3}\right)\right) \\ & =\frac{\tan \frac{\pi}{4}+\tan \left(\arctan \frac{1}{3}\right)}{1-\left(\tan \frac{\pi}{4}\right)\left(\tan \left(\arctan \frac{1}{3}\right)\right)} \\ & =\frac{1+\frac{1}{3}}{1-1 \times \frac{1}{3}}=2 \end{aligned} So, y=2y=\sqrt{2} Substitution into dydx\frac{d y}{d x} dydx=13(1+24)2(1+(13)4)=531029=364\frac{d y}{d x}=\frac{\frac{1}{\sqrt{3}}\left(1+\sqrt{2}^4\right)}{\sqrt{2}\left(1+\left(\frac{1}{\sqrt{3}}\right)^4\right)}=\frac{\frac{5}{\sqrt{3}}}{\frac{10 \sqrt{2}}{9}}=\frac{3 \sqrt{6}}{4}

Q11

Topic
5.2 Properties of Curves
Tag
Differentiation, Stationary points, Exponential and Logarithmic functions, Quotient rule
Source
M14/5/MATHL/HP1/ENG/TZ1/X/11
Question Text
Consider the function f(x)=ln(x1)x1,x>0f(x)=\frac{\ln (x-1)}{x-1}, x>0. (a) By finding f(x)f^{\prime}(x), determine the coordinates at which the curve reaches its maximum value. (a) (e+1,1e)\left(e+1, \frac{1}{e}\right) (b) (e2+1,1e2)\left(e^2+1, \frac{1}{e^2}\right) (c) (2,0)(2,0) (d) (3,ln22)\left(3, \frac{\ln 2}{2}\right)
Total Mark
3
Correct Answer
(a)
Explanation
n/a
Mark Scheme
f(x)=(x1)×1x1ln(x1)(x1)2f(x)=1ln(x1)(x1)2f^{\prime}(x)=\frac{(x-1) \times \frac{1}{x-1}-\ln (x-1)}{(x-1)^2} \\ f^{\prime}(x)=\frac{1-\ln (x-1)}{(x-1)^2} Consider f(x)=0f^{\prime}(x)=0 1ln(x1)=0ln(x1)=1x=e+1y=1e1-\ln (x-1)=0 \\ \ln (x-1)=1 \\ x=e+1 \\ y=\frac{1}{e} Hence maximum at the point (e+1,1e)\left(e+1, \frac{1}{e}\right)
Question Text
(b) The equation of the tangent at the xx-intercept of the graph of y=f(x)y = f(x) can be written as 2yax+b=02y - ax + b = 0 where a,ba, b are positive integers.
Total Mark
3
Correct Answer
6
Explanation
n/a
Mark Scheme
ln(x1)=0x=2\operatorname{ln}(x - 1) = 0\\ x = 2 xx-intercept (2,0)(2, 0) f(2)=1y=x22y2x+4=0f'(2) = 1 \\y = x - 2 \\2y - 2x + 4 = 0

Q12

Topic
5.2 Properties of Curves
Tag
Differentiation, Stationary points, Exponential and Logarithmic functions, Quotient rule
Source
N13-TZ0-P1-10(HL)
Question Text
The function ff is given by f(x)=exxf(x)=\frac{e^x}{x} where x>0x>0. (a) By considering f(x)f^{\prime}(x) determine the coordinates of the minimum point. (a) (1,e)(1, e) (b) (2,e2)\left(2, e^2\right) (c) (0.5,2e)(0.5,2 \sqrt{e}) (d) (0.25,4e14)\left(0.25,4 e^{\frac{1}{4}}\right)
Total Mark
3
Correct Answer
(a)
Explanation
n/a
Mark Scheme
f(x)=xexexx2f^{\prime}(x)=\frac{x e^x-e^x}{x^2} Set f(x)=0f^{\prime}(x)=0 xexex=0x e^x-e^x=0 \\ x=1 Minimum point (1,e)(1, e)
Question Text
(b) The graph of the function g(x)g(x) is obtained from the graph f(x)f(x) by stretching it horizontally by a scale factor of 3. (i) State the xx-coordinate of the minimum for g(x)g(x) Total Mark: 2 Correct Answer: 3 Explanation: n/a Mark Scheme: n/a (ii) The xx-coordinate of the point where f(x)=g(x)f(x)=g(x) can be written as lna\ln\sqrt{a} where aZ+a \in Z^{+}. Determine the value of aa. Total Mark: 2 Correct Answer: 27 Explanation: n/a Mark Scheme: g(x)=ex/3x/3g(x)=\frac{e^{x / 3}}{x / 3} Equating f(x)=g(x)f(x)=g(x) ex/3x/3=exx3=e2x3ln3=2x3x=32ln3=ln27\frac{e^{x / 3}}{x / 3}=\frac{e^x}{x} \\ 3=e^{\frac{2 x}{3}} \\ \ln 3=\frac{2 x}{3} \\ x=\frac{3}{2} \ln 3=\ln \sqrt{27}

Q13

Topic
5.2 Properties of Curves
Tag
Intercepts, Exponential and Logarithmic functions
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/11
Question Text
Consider the functions ff and gg defined by f(x)=lnx,xR\{x0}f(x)=\ln |x|, x \in R \backslash\{x \neq 0\} and g(x)=lnx+k,xR\{xk}g(x)=\ln |x+k|, x \in R \backslash\{x \neq-k\}, where kR,k>2k \in R, k>2. The graphs of ff and gg intersect at the point PP. (a) Find the coordinates of PP. (a) (k2,lnk2)\left(\frac{k}{2}, \ln \frac{k}{2}\right) (b) (k2,lnk2)\left(-\frac{k}{2},-\ln \frac{k}{2}\right) (c) (k2,lnk2)\left(\frac{k}{2},-\ln \frac{k}{2}\right) (d) (k2,lnk2)\left(-\frac{k}{2}, \ln \frac{k}{2}\right)
Total Mark
2
Correct Answer
(c)
Explanation
n/a
Mark Scheme
At point PP, the two functions intersect. ln(x+k)=ln(x)x=k2y=ln(k2)( or y=lnk2)\ln (x+k)=\ln (-x) \\ x=-\frac{k}{2} \\ y=\ln \left(\frac{k}{2}\right)\left(\text { or } y=\ln \left|\frac{k}{2}\right|\right) Therefore, the coordinates of point PP is equal to (k2,lnk2)\left(-\frac{k}{2}, \ln \frac{k}{2}\right).
Question Text
(b) The tangent to y=f(x)y = f(x) at PP passes through the origin (0,0)(0,0). The value of kk can be expressed as AeAe. Find the value of AA.
Total Mark
7
Correct Answer
2
Explanation
n/a
Mark Scheme
Attempt to differentiate ln(x)\ln (-x) or lnx\ln |x|, dydx=1x\frac{d y}{d x}=\frac{1}{x} When x=k2,dydx=2kx=-\frac{k}{2}, \frac{d y}{d x}=\frac{-2}{k} Since the tangent passes through the origin, yx=dydxln(k2)k2=2kln(k2)=1k=2e\frac{y}{x}=\frac{d y}{d x} \\ \frac{\ln \left(\frac{k}{2}\right)}{-\frac{k}{2}}=\frac{-2}{k} \\ \ln \left(\frac{k}{2}\right)=1 \\ k=2 e Hence, the value of AA is equal to 22.

Q14

Topic
5.2 Properties of Curves
Tag
Differentiation Stationary Points Point of Inflection Concavity Tangent Normal L'Hopital's Rule Trigonometric Functions Logarithmic Functions Graphs Intercepts
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/9
Question Text
Let f(x)=46x54x3,xR,x0f(x)=\frac{4-6 x^5}{4 x^3}, x \in R, x \neq 0 (a) The graph of y=f(x)y=f(x) has a local maximum at AA. The coordinates of AA can be expressed as (a,b2)\left(a, \frac{b}{2}\right). Find the product of aa and bb.
Total Mark
5
Correct Answer
5
Explanation
n/a
Mark Scheme
Attempt to differentiate f(x)=3x43xf^{\prime}(x)=-3 x^{-4}-3 x At the local maximum, the first derivative value is equal to 0 . 3x43x=0x5=1x=1-\frac{3}{x^4}-3 x=0 \\ x^5=-1 \\ x=-1 Therefore, point AA is located at (1,52)\left(-1,-\frac{5}{2}\right) and a=1a=-1 and b=5b=-5. The product of aa and bb is equal to 5 .
Question Text
(b) There is one point of inflection, BB, on the graph of y=f(x)y=f(x). The coordinates of BB can be expressed in the form B(2a,b×23a)B\left(2^a, b \times 2^{-3 a}\right), where a,bQa, b \in Q. Find the product of aa and bb.
Total Mark
8
Correct Answer
-2
Explanation
n/a
Mark Scheme
At the point of inflexion, the second derivative value is equal to 00 . f(x)=12x53=0x=45=225f^{\prime \prime}(x)=12 x^{-5}-3=0 \\ x=\sqrt[5]{4}=2^{\frac{2}{5}} a=25a=\frac{2}{5} To find the coordinate of BB, f(225)=46×224×255=5×265b=5f\left(2^{\frac{2}{5}}\right)=\frac{4-6 \times 2^2}{4 \times 2^{\frac{5}{5}}}=-5 \times 2^{-\frac{6}{5}} \\ b=-5 Hence, the product of aa and bb is equal to 2-2 .