Mission
home

3.4 Vectors (HL)

Tags
Vectors
Line
Plane
Intersection
Distance
Angle
Dot product
Cross product
Cartesian
Parametric
Terminology
Definition
Scalar
Quantities which have only magnitudes.
Vector a\overrightarrow{a}
Quantities which have both direction and magnitude.
They must be written with the arrow on top; the printed text represents them in bold.
Figure 3.4.1 Vector a\overrightarrow a , vector AB\overrightarrow {AB} and BA\overrightarrow {BA}
The magnitude of vector is the length of that vector:  a|\overrightarrow{a}|
The negative of a vector a\overrightarrow{a} is in the opposite direction of a\overrightarrow a, but has the same length.
Two vectors are equal if they have the same direction and magnitude.
Zero vector 0\overrightarrow 0 is a vector of length 00.
Vector addition
a+b\overrightarrow a+\overrightarrow b
Figure 3.4.2 Addition of two vectors
Geometrically, join the endpoint of a\overrightarrow a with the starting point of b\overrightarrow b.
AB+BC=AC\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}
Vector subtraction
ab\overrightarrow a-\overrightarrow b
Figure 3.4.3 Difference of two vectors
Geometrically, simply add b-\overrightarrow b to a\overrightarrow a like above.
AB=OBOA\overrightarrow{AB}=\overrightarrow {OB}-\overrightarrow{OA}
Unit vector
Unit vectors have a magnitude of 1.
You can obtain the unit vector in the a\overrightarrow a direction by: 1aa\frac{1}{|\overrightarrow a|}\overrightarrow a
Basis vector
The unit vector which spans the entire vector space.
In 2 dimension, the basis vectors are: i=(10)\overrightarrow i=\binom 10, j=(01)\overrightarrow j=\binom01
In 3 dimensions, the basis vectors extend to: i=(100)\overrightarrow i=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , j=(010)\overrightarrow j=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , k=(001)\overrightarrow k=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
Column vector
They represent the relative position to the origin.
If we have A(1,3,2)A(1, 3, -2), then OA=(132)\overrightarrow {OA}=\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}
Vector Algebra:
1.
(ab)±(cd)=(a±cb±d)\binom ab\pm\binom cd= \binom {a \pm c}{b \pm d}
2.
k(ab)=(kakb)k\binom ab=\binom {ka}{kb}
3.
(ab)=a2+b2|\binom ab|=\sqrt {a^2+b^2}
These can be extended to nnth dimension.
a//b\overrightarrow a // \overrightarrow b iff a=kb\overrightarrow a=k\overrightarrow b.
Inner product
Dot product
ab=abcosθ\overrightarrow a · \overrightarrow b = |\overrightarrow a| |\overrightarrow b|\cos\theta
(ab)(cd)=ac+bd\binom ab \cdot \binom cd=ac+bd
Note that the result of this operation is a scalar.
You can rearrange this to obtain the angle between the two vectors.
ab\overrightarrow a ⟂\overrightarrow b iff ab=0\overrightarrow a ·\overrightarrow b = 0
Outer product
Cross product
(HL)
a×b=absinθ|\overrightarrow a \times \overrightarrow b| =|\overrightarrow a | |\overrightarrow b|\sin\theta
Note that the result of this operation is a vector.
The geometric interpretation of this operation is the vector perpendicular to both a\overrightarrow a, b\overrightarrow b.
Figure 3.4.4 Difference between a×b\overrightarrow a \times \overrightarrow b and b×a\overrightarrow b \times\overrightarrow a
Therefore, the direction matters, and a×b=b×a\overrightarrow a \times \overrightarrow b = -\overrightarrow b \times\overrightarrow a. (not commutative)
Components
(HL)
It follows that:
1.
Component of a\overrightarrow a in the direction of b\overrightarrow b is: abb\frac {\overrightarrow a ·\overrightarrow b}{|\overrightarrow b|}
2.
Component of a\overrightarrow a perpendicular to b\overrightarrow b is a×bb\frac {|\overrightarrow a \times\overrightarrow b|}{|\overrightarrow b|}

Vector Applications

Types
Line Equation
Steps
We can now define the linear equation in multiple ways:
We call d\overrightarrow d as the direction vector.
The vector equation of a line has a form: r=a+λb \overrightarrow r =\overrightarrow a +\lambda\overrightarrow b, (xy)=(ab)+λ(d1d2)\binom xy=\binom ab+\lambda\binom {d_1}{d_2}
The parametric equation of a line has a form: x=a+λd1x = a + \lambda d_1, y=b+λd2y = b + \lambda d_2.
The cartesian equation of a line has a form: ax+by+c=0ax + by + c =0
Relationship:
1.
l1//l2l_1 // l_2 iff d1//d2\overrightarrow {d_1}//\overrightarrow {d_2}
2.
l1l2l_1 ⟂ l_2 iff d1d2\overrightarrow {d_1} ⟂\overrightarrow{ d_2}
3.
If l1l_1 and l2l_2 have a unique intersection, solve the simultaneous equation with their parametric equation.
4.
cosθ=d1d2d1d2\cos\theta =\frac {|d_1 · d_2|}{|d_1||d_2|}
5.
l1l_1 and l2l_2 are skew if they are not parallel, and do not intersect.(3D)
Note that this can be extended to 3D by adding the zz coordinate.
Area
A=12absinθ=12a×bA = \frac12|\overrightarrow a||\overrightarrow b| \sin\theta= \frac12|\overrightarrow a \times \overrightarrow b|
Kinematics(const. velocity)
The direction vector is the velocity vector.
It must have the magnitude equal to the given velocity.
Shortest distance
This is finding the shortest distance given a point P(a,b)P(a, b) and a line ll.
1.
Find the direction vector d\overrightarrow d of ll
2.
Parametrize the foot of perpendicular, NN on the line ll.
3.
Find PN\overrightarrow {PN}.
4.
Using PNd\overrightarrow {PN} ⟂ \overrightarrow d , find NN.
5.
Calculate PN\overrightarrow {PN} using the distance formula.
To check this quickly, you could also use a different formula.
Given a point P(x0,y0)P(x_0, y_0) and l:ax+by+c=0l : ax + by + c = 0,
distance=ax0+by0+ca2+b2distance =\frac{ |ax_0+ by_0 + c|}{\sqrt {a^2 + b^2}}
Plane equation
We can also define planes in 3D.
Plane equation can be determined by two coplanar vectors, or one normal vector.
The vector equation of a plane has the form: r=a+λv1+µv2\overrightarrow r= \overrightarrow a+\lambda \overrightarrow {v_1}+µ\overrightarrow {v_2},
(xyz)=(abc)+λ(a1b1c1)+µ(a2b2c2)\begin{pmatrix} x \\ y \\ z \end{pmatrix}=\begin{pmatrix} a \\ b \\ c \end{pmatrix}+ \lambda\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}+µ\begin{pmatrix} a_2 \\ b_2\\ c_2\end{pmatrix}
The cartesian equation has the form:
nr=0\overrightarrow n · \overrightarrow r=0, i.e. if n=(abc)\overrightarrow n=\begin{pmatrix} a \\ b \\ c \end{pmatrix} , and r=(x0y0z0)\overrightarrow r=\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} , we have:
a(xx0)+b(yy0)+c(zz0)=0a(x-x_0)+b(y-y_0)+c(z-z_0)=0
Note that you can find n\overrightarrow n as a cross product of any two coplanar vectors.
Relationship:
1.
Π1//Π2\Pi_1 // \Pi_2 if n1//n2\overrightarrow {n_1}//\overrightarrow {n_2}
2.
Π1Π2\Pi_1 ⟂\Pi_ 2 if n1n2\overrightarrow {n_1} ⟂ \overrightarrow {n_2}
3.
We can construct a system of equations using the parametric equations of Π1\Pi_1, Π2\Pi_2
a.
If the system is consistent, it intersects on a unique point.
b.
Otherwise, it intersects on a line.
4.
Angle between two planes: cosθ=d1d2d1d2\cos \theta =\frac{|d_1 · d_2|}{|d_1||d_2|}
5.
Angle between a plane and a line: sinθ=ndnd\sin\theta=\frac{|n · d|}{|n||d|}
Shortest distance
This is finding the shortest distance given a point A(a,b,c)A(a, b, c) and a plane Π\Pi.
Figure 3.4.5 Shortest distance in a plane (3D)
1.
Find the normal vector of the plane Π\Pi
2.
Parameterize the line AN\overrightarrow {AN}
3.
As the line intersects the plane at point NN, substitute the parametric form to obtain the chosen parameter, λ\lambda
4.
Calculate AN|\overrightarrow {AN}|
To check this quickly, you could also use a different formula.
Given a point P(x0,y0,z0)P(x_0, y_0, z_0) and Π\Pi: ax+by+cz+d=0 ax + by + cz +d= 0,
distance=ax0+by0+cz0+da2+b2+c2distance = \frac{|ax_0+ by_0 + cz_0+d|}{\sqrt{a^2 + b^2+c^2}}