Mission
home

3.4 Vectors (HL)

Q1

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/5
Question Text
ABCD is a parallelogram, where AB=i+2j+3k\overrightarrow{A B}=-i+2 j+3 k and AD=4ij2k\overrightarrow{A D}=4 i-j-2 k. (a) The area of the parallelogram ABCD can be written as aba \sqrt{b}. Find a+ba+b.
Total Mark
3
Correct Answer
11
Explanation
n/a
Mark Scheme
AB×AD=i+10j7k \overrightarrow{A B} \times \overrightarrow{A D} =-i+10 j-7 k Area = =AB×AD=12+102+72=56(=150)|\overrightarrow{A B} \times \overrightarrow{A D}|=\sqrt{1^2+10^2+7^2}=5 \sqrt{6}(=\sqrt{150}) Thus, a+ba+b is 11 .
Question Text
(b) By using a suitable scalar product of two vectors, determine whether AB^CA \hat{B} C is acute or obtuse. Type in 'acute' or 'obtuse'.
Total Mark
4
Correct Answer
Acute
Explanation
n/a
Mark Scheme
METHOD 1 ABAD=426=12\overrightarrow{A B} \cdot \overrightarrow{A D}=-4-2-6=-12 considering the sign of the answer ABAD<0\overrightarrow{A B} \cdot \overrightarrow{A D}<0 therefore angle DA^BD \hat{A} B is obtuse (as it is a parallelogram), AB^CA \hat{B} C is acute METHOD 2 BABC=+4+2+6=12\overrightarrow{B A} \cdot \overrightarrow{B C}=+4+2+6=12 considering the sign of the answer BABC>0AB^C\overrightarrow{B A} \cdot \overrightarrow{B C}>0 \Rightarrow A \hat{B} C is acute

Q2

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N16-TZ0-P1 -4(HL)
Question Text
Consider the vectors a=i3j2k,b=3j+2ka=i-3 j-2 k, b=-3 j+2 k. (a) The vector a×ba \times b can be written as ai+bj+cka i+b j+c k. Find a+b+ca+b+c.
Total Mark
2
Correct Answer
-17
Explanation
n/a
Mark Scheme
a×b=12i2j3ka \times b=-12 i-2 j-3 k thus, a+b+c=1223=17a+b+c=-12-2-3=-17
Question Text
(b) Hence find the Cartesian equation of the plane containing the vectors aa and bb, and passing through the point (1,0,1)(1,0,-1). (a) 12x+2y3z=912 x+2 y-3 z=9 (b) 12x2y3z=912 x-2 y-3 z=9 (c) 12x2y3z=9-12 x-2 y-3 z=-9 (d) 12x2y3z=9-12 x-2 y-3 z=9
Total Mark
3
Correct Answer
(c)
Explanation
n/a
Mark Scheme
METHOD 1 12x2y3z=d12×12×03(1)=dd=912x2y3z=9(or 12x+2y+3z=9)-12 x-2 y-3 z=d-12 \times 1-2 \times 0-3(-1)=d \\ \Rightarrow d=-9-12 x-2 y-3 z=-9(\text {or } 12 x+2 y+3 z=9) METHOD 2 (xyz)(1223)=(101)(1223)12x2y3z=9( or 12x+2y+3z=9)(x y z) \cdot(-12-2-3)=(10-1) \cdot(-12-2-3) \\ -12 x-2 y-3 z=-9(\text { or } 12 x+2 y+3 z=9)

Q3

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N16-TZ0-P1 -8(HL)
Question Text
Consider the lines l1l_1 and l2l_2 defined by l1:r=(32a)+β(142)l_1: r=(-3\quad-2\quad a)+\beta(1\quad4\quad2) and l2:6x3=y24=1zl_2: \frac{6-x}{3}=\frac{y-2}{4}=1-z where a is a constant. Given that the lines l1l_1 and l2l_2 intersect at a point PP, (a) find the value of aa;
Total Mark
4
Correct Answer
-7
Explanation
n/a
Mark Scheme
METHOD 1 l1:r=(32a)+β(142){x=3+β,y=2+4β,z=a+2β}6(3+β)3=(2+4β)244=4β3β=3,6(3+β)3=1(a+2β)2=5aa=7 l_1: r=(-3\quad-2\quad a)+\beta(1\quad4\quad2) \Rightarrow\{x=-3+\beta, y=-2+4 \beta, z=a+2 \beta\} \\ \frac{6-(-3+\beta)}{3}=\frac{(-2+4 \beta)-2}{4} \Rightarrow 4=\frac{4 \beta}{3} \Rightarrow \beta=3, \\ \frac{6-(-3+\beta)}{3}=1-(a+2 \beta) \Rightarrow 2=-5-a \Rightarrow a=-7 METHOD 2 3+β=63λ,2+4β=4λ+2,a+2β=1λ-3+\beta=6-3 \lambda,-2+4 \beta=4 \lambda+2, a+2 \beta=1-\lambda Attempt to solve λ=2,β=3a=1λ2β=7\lambda=2, \beta=3 a=1-\lambda-2 \beta=-7
Question Text
(b) the coordinates of the point of intersection PP is (p,q,r)(p, q, r). Find p+q+rp+q+r.
Total Mark
2
Correct Answer
9
Explanation
n/a
Mark Scheme
OP=(327)+3(142)=(0101)P(0,10,1)\overrightarrow{O P}=(-3-2-7)+3 \cdot(1\quad4\quad2) \\ =(0\quad 10\quad-1) \\ \therefore P(0,10,-1) Hence, p+q+r=0+101=9p+q+r=0+10-1=9

Q4

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M16-TZ1-P1-11(HL)
Question Text
Two planes have equations Π1:4x+y+z=8 and Π2:4x+3yz=0 \Pi_1: 4 x+y+z=8 \text { and } \Pi_2: 4 x+3 y-z=0 (a) The cosine of the angle between the two planes in the form pq\sqrt{\frac{p}{q}} (fully simplified) where p,qZp, q \in Z. Find p+qp+q.
Total Mark
4
Correct Answer
22
Explanation
n/a
Mark Scheme
angle between planes is equal to the angles between the normal to the planes (411)(431)=18(4\quad1\quad1) \cdot(4\quad3\quad-1)=18 let θ\theta be the angle between the normal to the planes cosθ=181826=1826=913\cos \theta=\frac{18}{\sqrt{18} \sqrt{26}}=\sqrt{\frac{18}{26}}=\sqrt{\frac{9}{13}} Hence, a+b=9+13=22a+b=9+13=22
Question Text
(b) Let LL be the line of intersection of the two planes. BB is the point on Π1\Pi_1 with coordinates (a,b,1)(a, b, 1). Given the vector AB \overrightarrow{AB } is perpendicular to LL find the value of a+ba+b.
Total Mark
5
Correct Answer
4
Explanation
n/a
Mark Scheme
AB=(ab1)(104)=(a1b3)(a1b3)(122)=0a+1+2b6=0a2b=5 \overrightarrow{A B}=(a\quad b \quad1)-(1\quad0\quad4)=(a-1\quad b\quad-3) \\ (a-1\quad b\quad-3) \cdot(-1\quad2\quad2)=0 \\ -a+1+2 b-6=0 \Rightarrow a-2 b=-5 lies on Π1\Pi_1 so 4a+b+1=84a+b=7,a=1,b=34 a+b+1=8 \Rightarrow 4 a+b=7, a=1, b=3 Hence, a+b=4a+b=4
Question Text
(c) The point PP lies on LL and ABP=45A B P=45^{\circ}. Find the coordinates of the two possible positions of PP. (a) (12,22,4+22)1-\sqrt{2}, 2 \sqrt{2}, 4+2 \sqrt{2}) (b) (1+2,22,4+22)(1+\sqrt{2}, 2 \sqrt{2}, 4+2 \sqrt{2}) (c) (12,22,422)(1-\sqrt{2},-2 \sqrt{2}, 4-2 \sqrt{2}) (d) (1+2,22,422)(1+\sqrt{2},-2 \sqrt{2}, 4-2 \sqrt{2}) (e) (2,22,22) (-\sqrt{2},-2 \sqrt{2}, 2 \sqrt{2})
Total Mark
5
Correct Answer
(a), (d)
Explanation
n/a
Mark Scheme
METHOD 1 AB=AP=32AP=t(122)3t=32t=±2P(12,22,4+22) and (1+2,22,422) |\overrightarrow{A B}|=|\overrightarrow{A P}|=3 \sqrt{2} \\ \overrightarrow{A P}=t(-1\quad2\quad2) \\ |3 t|=3 \sqrt{2} \Rightarrow t= \pm \sqrt{2} P(1-\sqrt{2}, 2 \sqrt{2}, 4+2 \sqrt{2}) \text { and }(1+\sqrt{2},-2 \sqrt{2}, 4-2\sqrt{2}) METHOD 2 let PP have coordinates (1λ,2λ,4+2λ)(1-\lambda, 2 \lambda, 4+2 \lambda) BA=(033),BP=(λ2λ33+2λ)cos45=BABPBABPBABP=1812=18189λ2+18\overrightarrow{B A}=(0\quad-3\quad3), \overrightarrow{B P}=(-\lambda \quad2 \lambda-3\quad3+2 \lambda) \\ \cos 45^{\circ}=\frac{\overrightarrow{B A} \cdot \overrightarrow{B P}}{|B A \| B P|} \\ \overrightarrow{B A} \cdot \overrightarrow{B P}=18 \\ \frac{1}{\sqrt{2}}=\frac{18}{\sqrt{18} \sqrt{9 \lambda^2+18}} λ=±2P(12,22,4+22) and (1+2,22,422)\lambda= \pm \sqrt{2} P(1-\sqrt{2}, 2 \sqrt{2}, 4+2 \sqrt{2}) \text { and }(1+\sqrt{2},-2 \sqrt{2}, 4-2 \sqrt{2})

Q5

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M16-TZ2-P1-10(HL)
Question Text
A line LL has equation x2p=yq2=z1\frac{x-2}{p}=\frac{y-q}{2}=z-1 where p,qRp, q \in R. A plane Π\Pi has equation x+y+3z=9x+y+3 z=9. (a) Given that LL lies in the plane Π\Pi, find the value of pp and the value of qq. Hence find p+qp+q
Total Mark
4
Correct Answer
-1
Explanation
n/a
Mark Scheme
METHOD 1 (2+pλ)+(q+2λ)+3(1+λ)=9(q+5)+(p+5)λ=9p=5 and q=4(2+p \lambda)+(q+2 \lambda)+3(1+\lambda)=9(q+5)+(p+5) \lambda=9 p=-5 \text { and } q=4 METHOD 2 direction vector of line is perpendicular to plane, so (p21)(113)=0(p\quad2\quad1) \cdot(1\quad1\quad3)=0 \quad & p=5\hspace{0.2cm} p=-5 (2,q,1)(2, q, 1) is common to both LL and Π\Pi q=4q=4 Hence, p+q=5+4=1p+q=-5+4=-1
Question Text
(b) Consider the different case where the acute angle between LL and Π\Pi is θ\theta. where θ=arcsin(111)\theta=\arcsin \left(\frac{1}{\sqrt{11}}\right) (i) Find pp Total Mark: 4 Correct Answer: -2 Explanation: n/a Mark Scheme: METHOD 1 α\alpha is the acute angle between nn and LL if sinθ=111\sin \theta=\frac{1}{\sqrt{11}} then cosα=111\cos \alpha=\frac{1}{\sqrt{11}} attempting to use cosα=ndnd\cos \alpha=\frac{n \cdot d}{|n||d|} or sinθ=ndnd\sin \theta=\frac{n \cdot d}{|n||d|} p+511×p2+5=111\frac{p+5}{\sqrt{11} \times \sqrt{p^2+5}}=\frac{1}{\sqrt{11}} (p+5)2=p2+5(p+5)^2=p^2+5 10p=2010 p=-20 (or equivalent) p=2p=-2 METHOD 2 α\alpha is the angle between nn and LL if sinθ=111\sin \theta=\frac{1}{\sqrt{11}} then sinα=1011\sin \alpha=\frac{\sqrt{10}}{\sqrt{11}} attempting to use sinα=n×dnd\sin \alpha=\frac{|n \times d|}{|n||d|} (5)2+(3p1)2+(2p)211×p2+5=1011\frac{\sqrt{(-5)^2+(3 p-1)^2+(2-p)^2}}{\sqrt{11} \times \sqrt{p^2+5}}=\frac{\sqrt{10}}{\sqrt{11}} p2p+3=p2+5p^2-p+3=p^2+5 p+3=5-p+3=5 (or equivalent) p=2p=-2 (ii) If LL intersects Π\Pi at z=1z=-1, find the value of qq. Total Mark: 7 Correct Answer: 10 Explanation: n/a Mark Scheme: p=2p=-2 and z=-1x22=yq2=2 \Rightarrow \frac{x-2}{-2}=\frac{y-q}{2}=-2 x=6x=6 and y=q4y=q-4 this satisfies Π\Pi so 6+q43=96+q-4-3=9 thus, q=10q=10

Q6

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/3
Question Text
A point P , relative to an origin O , has position vector OP=(1+s3+2s1s),sR \overrightarrow{O P}=(1+s\hspace{0.2cm}3+2s\hspace{0.2cm}1-s), s \in R. Find ss which gives the minimum length of OP\overrightarrow{O P} .
Total Mark
7
Correct Answer
-1
Explanation
n/a
Mark Scheme
OP=(1+s)2+(3+2s)2+(1s)2(=6s2+12s+11)|\overrightarrow{O P}|=\sqrt{(1+s)^2+(3+2 s)^2+(1-s)^2} \quad\left(=\sqrt{6 s^2+12 s+11}\right) EITHER attempt to differentiate: ddsOP2(=12s+12)\frac{d}{d s}|\overrightarrow{O P}|^2(=12 s+12) attempt to solve ddsOP2=0\frac{d}{d s}|\overrightarrow{O P}|^2=0 for ss s=1s=-1 OR attempt to differentiate: ddsOP(=6s+66s2+12s+11)\frac{d}{d s}|\overrightarrow{O P}|\left(=\frac{6 s+6}{\sqrt{6 s^2+12 s+11}}\right) attempt to solve ddsOP=0\frac{d}{d s}|\overrightarrow{O P}|=0 for ss s=1s=-1 OR attempt at completing the square: (OP2=6(s+1)2+5)\left(|\overrightarrow{O P}|^2=6(s+1)^2+5\right) minimum value occurs at s=1s=-1 THEN the minimum length of OP\overrightarrow{O P} is a minimum when OP\overrightarrow{O P} is perpendicular to (121)(1\hspace{0.2cm}2\hspace{0.2cm}-1) (1+s3+2s1s)(121)=0(1+s\quad3+2s\quad1-s) \cdot(1\quad2\quad-1)=0 attempt to solve 1+s+6+4s1+s=0(6s+6=0)1+s+6+4 s-1+s=0(6 s+6=0) for ss s=1s=-1

Q7

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M14/5/MATHL/HP1/ENG/TZ1/X/12
Question Text
(a) Find the coordinates of M , the mid-point of [OB]. (a) (3,6,3)(3, \sqrt{6}, \sqrt{3}) (b) (3,6,3)(3,-\sqrt{6}, \sqrt{3}) \quad (c) (3,6,3)(3,-\sqrt{6},-\sqrt{3}) (d) (3,6,3)(-3,-\sqrt{6},-\sqrt{3})
Total Mark
2
Correct Answer
(b)
Explanation
n/a
Mark Scheme
M(3,242,122)=(3,6,3).M\left(3,-\frac{\sqrt{24}}{2}, \frac{\sqrt{12}}{2}\right)=(3,-\sqrt{6}, \sqrt{3}).
Question Text
(b) Find the equation of the plane Π\Pi, containing the square OABC. (a) y+2z=0y+2 z=0 (b) y+3z=0y+\sqrt{3} z=0 (c) y+4z=0 y+4 z=0 (d) y+2z=0y+\sqrt{2} z=0
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
METHOD 1 OA×OC=(600)×(02412)=(0612624)(=00.2cm123126)\overrightarrow{O A} \times \overrightarrow{O C}=(6\quad0\quad0) \times(0\quad-\sqrt{24}\quad\sqrt{12})=(0\quad-6\quad\sqrt{12}-6 \sqrt{24})(=0\quad{0.2cm}-12 \sqrt{3}\quad-12 \sqrt{6}) equation of plane is 612y624z=d-6 \sqrt{12} y-6 \sqrt{24} z=d any valid method showing that d=0d=0 Π:y+2z=0\Pi: y+\sqrt{2} z=0 METHOD 2 Equation of plane is ax+by+cz=da x+b y+c z=d SubstitutingO to find d=0d=0 Substituting two points(A, B, C or M) eg 6a=0,24b+12c=06 a=0,-\sqrt{24} b+\sqrt{12} c=0 Π:y+2z=0\Pi: y+\sqrt{2} z=0
Question Text
(c) Find a vector equation of the line LL, through MM , perpendicular to the plane Π\Pi. (a) (363)+λ(013) (3\hspace{0.2cm}-\sqrt{6}\hspace{0.2cm}\sqrt{3})+\lambda\left(0\hspace{0.2cm}1 \hspace{0.2cm}\sqrt{3}\right) (b) (363)+λ(012) (3\hspace{0.2cm}-\sqrt{6}\hspace{0.2cm}\sqrt{3})+\lambda\left(0\hspace{0.2cm}1 \hspace{0.2cm}-\sqrt{2}\right) (c) (363)+λ(012) (3\quad-\sqrt{6}\quad\sqrt{3})+\lambda\left(0\quad1 \quad2\right) (d) (363)+λ(012) (3\quad-\sqrt{6}\quad\sqrt{3})+\lambda\left(0\quad1 \quad\sqrt{2}\right)
Total Mark
4
Correct Answer
(d)
Explanation
n/a
Mark Scheme
r= r=(363)+λ(012) (3\quad-\sqrt{6}\quad\sqrt{3})+\lambda\left(0\quad1 \quad\sqrt{2}\right)
Question Text
(d) Find the coordinates of DD , the point of intersection of the LL with the plane whose equation is y=0y=0. (a) (3,0,3)(3,0, \sqrt{3}) (b) (3,0,33)(-3,0,3 \sqrt{3}) (c) (3,0,33)(3,0,3 \sqrt{3}) (d) (3,0,32)(3,0,3 \sqrt{2})
Total Mark
3
Correct Answer
(c)
Explanation
n/a
Mark Scheme
Using y=0y=0 to find λ\lambda Substitute their λ\lambda into their equation from part(c) DD has coordinates (3,0,33)(3,0,3 \sqrt{3})
Question Text
(e) Find the coordinates of EE, the reflection of the point DD in the plane Π\Pi. (a) (3,26,3)(3,2 \sqrt{6}, \sqrt{3}) (b) (3,26,3)(3,-2 \sqrt{6},-\sqrt{3}) (c) (3,26,3)(-3,2 \sqrt{6},-\sqrt{3}) (d) (3,26,2)(3,-2 \sqrt{6},-\sqrt{2})
Total Mark
5
Correct Answer
(b)
Explanation
n/a
Mark Scheme
λ\lambda for point EE is the negative of the λ\lambda for point DD EE has coordinates (3,26,3)(3, -2\sqrt6,-\sqrt3)
Question Text
(f) Find the angle OD^AO \hat{D} A (in degrees).
Total Mark
4
Correct Answer
60
Explanation
n/a
Mark Scheme
DADO=(3033)(3033)=18\overrightarrow{D A} \cdot \overrightarrow{D O}=(3\quad0\quad-3 \sqrt{3}) \cdot(-3\quad0\quad-3 \sqrt{3})=18 cosODA=183636=12\cos O D A=\frac{18}{\sqrt{36} \sqrt{36}}=\frac{1}{2} Hence OD^A=60O \hat{D} A=60^{\circ}

Q8

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N13-TZ0-P1-11(HL)
Question Text
Consider the points A(1,0,0),B(2,2,2)\mathrm{A}(1,0,0), \mathrm{B}(2,2,2), and C(0,2,1)\mathrm{C}(0,2,1). (a) The vector CA×CB\overrightarrow{C A} \times \overrightarrow{C B} can be expressed as (a,b,c)(a, b, c). Find a+b+ca+b+c.
Total Mark
4
Correct Answer
-1
Explanation
Mark Scheme
CA=(121)CB=(201)CA×CB=(ijk12c201)\overrightarrow{C A}=(1\quad-2\quad-1) \\ \overrightarrow{C B}=(2\quad0\quad1) \\ \overrightarrow{C A} \times \overrightarrow{C B}=\left(\begin{matrix} i & j & k\\ 1 & -2 & c\\ 2 & 0 & 1 \end{matrix}\right)=(234) =(-2\quad-3\quad4) Thus, a+b+c=1a+b+c=-1
Question Text
(b) Find an exact value for the area of the triangle ABCA B C. (a) 130 \frac{1}{\sqrt{30}} (b) 12\frac{1}{2} (c) 2930\frac{\sqrt{29}}{\sqrt{30}} (d) 292\frac{\sqrt{29}}{2}
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
METHOD 1 12CA×CB=12(2)2+(3)2+42=292\frac{1}{2}|\overrightarrow{C A} \times \overrightarrow{C B}|=\frac{1}{2} \sqrt{(-2)^2+(-3)^2+4^2}=\frac{\sqrt{29}}{2} METHOD 2 attempt to apply 12CACBsinC\frac{1}{2}|C A||C B| \sin C CACB=56cosCcosC=130sinC=2930C A \cdot C B=\sqrt{5} \cdot \sqrt{6} \cos C \Rightarrow \cos C=\frac{1}{\sqrt{30}} \Rightarrow \sin C=\frac{\sqrt{29}}{\sqrt{30}} area =292=\frac{\sqrt{29}}{2}
Question Text
(c) What is the Cartesian equation of the plane Π1\Pi_1, containing the triangle ABCA B C. (a) 2x+3y4z=32 x+3 y-4 z=3 (b) 2x3y4z=22 x-3 y-4 z=2 (c) 2x+3y4z=02 x+3 y-4 z=0 (d) 2x+3y4z=22 x+3 y-4 z=2
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
METHOD 1 r(234)=(100)(234)&2x3y+4z=2&2x+3y4z=2\begin{aligned} & r \cdot(-2\quad-3\quad4)=(1\quad0\quad0) \cdot(-2\quad-3\quad4) \& \Rightarrow-2 x-3 y+4 z=-2 \\ & \& \Rightarrow 2 x+3 y-4 z=2\end{aligned} METHOD 2 2x3y+4z=d-2 x-3 y+4 z=d substituting a point in the plane d=22x3y+4z=22x+3y4z=2d=-2 \Rightarrow-2 x-3 y+4 z=-2 \Rightarrow 2 x+3 y-4 z=2
Question Text
(d) A second plane Π2\Pi_2 is defined by the Cartesian equation Π2:4xyz=4\Pi_2: 4 x-y-z=4 . L1 L_1 is the line of intersection of the planes Π1\Pi_1 and Π2\Pi_2. Find a vector equation for L1L_1. (a) L1:r=(100)+λ(122) L_1: r=(-1\quad0\quad0)+\lambda(1\quad2\quad2) (b) L1:r=(100)+λ(122) L_1: r=(-1\quad0\quad0)+\lambda(-1\quad2\quad2) (c) L1:r=(100)+λ(122) L_1: r=(1\quad0\quad0)+\lambda(1\quad-2\quad-2) (d) L1:r=(100)+λ(122) L_1: r=(1\quad0\quad0)+\lambda(1\quad2\quad2)
Total Mark
5
Correct Answer
(d)
Explanation
n/a
Mark Scheme
METHOD 1 ijk12c201=(714 quad14)\left|\begin{matrix} i & j & k\\ 1 & -2 & c\\ 2 & 0 & 1 \end{matrix}\right| = (-7\quad-14\ quad-14) n=(122)z=0y=0,x=1\begin{aligned} & n=\left(1\quad 2\quad 2\right) \\ & z=0 \Rightarrow y=0, x=1\end{aligned} L1:r=(100)+λ(122) L_1: r=(1\quad0\quad0)+\lambda(1\quad2\quad2) METHOD 2 eliminate 1 of the variables, e.g. xx 7y+7z=0-7 y+7 z=0 introduce a parameter z=λ \Rightarrow z=\lambda y=λ,x=1+λ2y=\lambda, x=1+\frac{\lambda}{2} L1:r=(100)+λ(122) L_1: r=(1\quad0\quad0)+\lambda(1\quad2\quad2) METHOD 3 z=tz=t write xx and yy in terms of t4xy=4+t,2x+3y=2+4tt \Rightarrow 4 x-y=4+t, 2 x+3 y=2+4 t or equivalent attempt to eliminate xx or yy x,y,zx, y, z expressed in parameters z=t\Rightarrow z=t y=t,x=1+t2y=t, x=1+\frac{t}{2} L1:r=(100)+λ(122) L_1: r=(1\quad0\quad0)+\lambda(1\quad2\quad2)
Question Text
(e) A third plane Π3\Pi_3 is defined by the Cartesian equation 16x+αy3z=β16 x+\alpha y-3 z=\beta. Find the value of α\alpha if all three planes contain L1L_1.
Total Mark
3
Correct Answer
-5
Explanation
n/a
Mark Scheme
METHOD 1 direction of the line is perpendicular to the normal of the plane (16α3)(122)=0&16+2α6=0α=5(16 \alpha-3) \cdot(1\quad2\quad2)=0 \quad\&\quad 16+2 \alpha-6=0 \Rightarrow \alpha=-5 METHOD 2 solving line/plane simultaneously 16(1+λ)+2αλ6λ=β16+(10+2α)λ=βα=516(1+\lambda)+2 \alpha \lambda-6 \lambda=\beta 16+(10+2 \alpha) \lambda=\beta \Rightarrow \alpha=-5

Q9

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M13-TZ1-P1-2(HL)
Question Text
Consider the points A(1,2,3),B(1,0,5)A(1,2,3), B(1,0,5) and C(2,1,4)C(2,-1,4). (a) AB×AC\overrightarrow{A B} \times \overrightarrow{A C} can be expressed as (abc)(a \quad b \quad c). Find a+b+ca+b+c
Total Mark
4
Correct Answer
8
Explanation
n/a
Mark Scheme
AB=(105)(123)=(022),AC=(214)(123)=(131)\overrightarrow{A B}=(1\quad0\quad5)-(1\quad2\quad3)=(0\quad-2\quad2), \overrightarrow{A C}=(2\quad-1\quad4)-(1\quad2\quad3)=(1\quad-3\quad1) AB×AC\overrightarrow{A B} \times \overrightarrow{A C} =ijk022131=(422)= \left|\begin{matrix} i & j & k\\0&-2&2\\1&-3&1\end{matrix}\right|=(4\quad2\quad2) thus, a+b+c=8a+b+c=8
Question Text
(b) The area of the triangle ABCABC can be expressed fully into x\sqrt{x}. Find xx
Total Mark
2
Correct Answer
6
Explanation
n/a
Mark Scheme
area = 12(AB×AC)=1242+22+22=1224(=6)\frac{1}{2}|(\overrightarrow{A B} \times \overrightarrow{A C})| \\ =\frac{1}{2} \sqrt{4^2+2^2+2^2}=\frac{1}{2} \sqrt{24}(=\sqrt{6}) Thus, x=6x=6.

Q10

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M13-TZ2-P1-11(HL)
Question Text
The vertices of a triangle ABCABC has coordinates given by A(1,2,3),B(4,1,1)A(-1,2,3), B(4,1,1) and C(3,2,2)C(3,-2,2). (a) Find the lengths of the sides of the triangle.
Total Mark
4
Correct Answer
33,30,11\sqrt{33}, \sqrt{30}, \sqrt{11}
Explanation
n/a
Mark Scheme
AB=OBOA=5ij2kAB=5ij2k=30BC=i3j+k=11CA=4i+4j+k=33\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=5 i-j-2 k \\ |\overrightarrow{A B}|=|5 i-j-2 k|=\sqrt{30}\\|\overrightarrow{B C}|=|-i-3 j+k|=\sqrt{11}\\|\overrightarrow{C A}|=|-4 i+4 j+k|=\sqrt{33}
Question Text
(b) What is BC×CA\overrightarrow{B C} \times \overrightarrow{C A}. (a) 7i3j+16k-7 i-3 j+16 k (b) 7i3j16k-7 i-3 j-16 k (c) 7i+3j16k7 i+3 j-16 k (d) 7i3j+16k7 i-3 j+16 k
Total Mark
3
Correct Answer
(b)
Explanation
n/a
Mark Scheme
BC×CA=ijk131441=((3)×11×4)i+(1×(4)(1)×1)j+((1)×4(3)×(4))k=7i3j16k\overrightarrow{B C} \times \overrightarrow{C A}= \left|\begin{matrix}i&j&k\\-1&-3&1\\-4&4&1\end{matrix}\right| \\ =((-3) \times 1-1 \times 4) i+(1 \times(-4)-(-1) \times 1) j+((-1) \times 4-(-3) \times(-4)) k=-7 i-3 j-16 k
Question Text
(c) Find the Cartesian equation of the plane containing the triangle ABCA B C. (a) 7x3y16z=477 x-3 y-16 z=47 (b) 7x3y+16z=47-7 x-3 y+16 z=47 (c) 7x+3y16z=477 x+3 y-16 z=-47 (d) 7x+3y+16z=477 x+3 y+16 z=47
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
attempt at the use of (ra)n=0(r-a) \cdot n=0 using r=xi+yi+zk,a=OAr=x i+y i+z k, a=\overrightarrow{O A} and n=7i3i16kn=-7 i-3 i-16 k 7x+3y+16z=47 7 x+3 y+16 z=47

Q11

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N19/5/MATHL/HP1/ENG/TZ1/XX/4
Question Text
AA and BB are acute angles such that cosA=23\cos A=\frac{2}{3} and sinB=13\sin B=\frac{1}{3}. What is cos(2A+B)\cos (2 A+B). (a) 2227+4527\frac{2 \sqrt{2}}{27}+\frac{4 \sqrt{5}}{27} (b) 2227+4527-\frac{2 \sqrt{2}}{27}+\frac{4 \sqrt{5}}{27} (c) 22274527\frac{2 \sqrt{2}}{27}-\frac{4 \sqrt{5}}{27} (d) 22274527-\frac{2 \sqrt{2}}{27}-\frac{4 \sqrt{5}}{27}
Total Mark
7
Correct Answer
(d)
Explanation
n/a
Mark Scheme
attempt to use cos(2A+B)=cos2AcosBsin2AsinB\cos (2 A+B)=\cos 2 A \cos B-\sin 2 A \sin B (may be seen later) attempt to use any double angle formulae (seen anywhere) attempt to find either sinA\sin A or cosB\cos B (seen anywhere) cosA=23sinA(=149)=53sinB=13cosB(=119=83)=223cos2A(=2cos2A1)=19sin2A(=2sinAcosA)=459Socos(2A+B)=(19)(223)(459)(13)=22274527 \cos A=\frac{2}{3} \Rightarrow \sin A\left(=\sqrt{1-\frac{4}{9}}\right)=\frac{\sqrt{5}}{3} \\ \sin B=\frac{1}{3} \Rightarrow \cos B\left(=\sqrt{1-\frac{1}{9}}=\frac{\sqrt{8}}{3}\right)=\frac{2 \sqrt{2}}{3} \\ \cos 2 A\left(=2 \cos ^2 A-1\right)=-\frac{1}{9} \\ \sin 2 A(=2 \sin A \cos A)=\frac{4 \sqrt{5}}{9} \\ \operatorname{So} \cos (2 A+B)=\left(-\frac{1}{9}\right)\left(\frac{2 \sqrt{2}}{3}\right)-\left(\frac{4 \sqrt{5}}{9}\right)\left(\frac{1}{3}\right) \\ =-\frac{2 \sqrt{2}}{27}-\frac{4 \sqrt{5}}{27}

Q12

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N19/5/MATHL/HP1/ENG/TZ1/XX/11
Question Text
Points A(0,0,5),B(0,5,0),C(5,0,0),V(p,p,p)A(0,0,5), B(0,5,0), C(5,0,0), V(p, p, p) form the vertices of a tetrahedron. Consider the case where the faces ABVA B V and ACVA C V are perpendicular. Find the two possible values of pp. (a) 13-\frac{1}{3} (b) 0 (c) 13\frac{1}{3} (d) 22 (e) 103\frac{10}{3}
Total Mark
8
Correct Answer
(b), (e)
Explanation
n/a
Mark Scheme
Take the normal of the two planes Normal of ABVABV (NABV)\left(N_{A B V}\right) : AB×BV=(055)×(pp5p)=(10p255p5p)\overrightarrow{A B} \times \overrightarrow{B V}=\left(\begin{array}{c} 0 \\ 5 \\ -5 \end{array}\right) \times\left(\begin{array}{c} p \\ p-5 \\ p \end{array}\right)=\left(\begin{array}{c} 10 p-25 \\ -5 p \\ -5 p \end{array}\right) Normal (NACV)\left(N_{A C V}\right) AC×CV=(505)×(p5pp)=(5p10p+255p)\overrightarrow{A C} \times \overrightarrow{C V}=\left(\begin{array}{c} 5 \\ 0 \\ -5 \end{array}\right) \times\left(\begin{array}{c} p-5 \\ p \\ p \end{array}\right)=\left(\begin{array}{c} 5 p \\ -10 p+25 \\ 5 p \end{array}\right) As the planes are perpendicular NABVNACV=0(10p25)5p5p(10p+25)5p(5p)=02p25p+2p25pp2=3p210p=p(3p10)=0p=0,103N_{A B V} \cdot N_{A C V}=0 \\ (10 p-25) 5 p-5 p(-10 p+25)-5 p(5 p)=0 \\ 2 p^2-5 p+2 p^2-5 p-p^2=3 p^2-10 p=p(3 p-10)=0 \\ p=0, \frac{10}{3}

Q13

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/1
Question Text
Let a=(kk1)a=\left(\begin{array}{lll}k & -k & -1\end{array}\right) and b=(2k53),kRb=\left(\begin{array}{lll}2 k & 5 & -3\end{array}\right), k \in R. Given that aa and bb are perpendicular, find the possible values of kk. (select all that apply) (a) 12\frac{1}{2} (b) 11 (c) 32\frac{3}{2} (d) 22 (e) 52\frac{5}{2}
Total Mark
4
Correct Answer
(b), (c)
Explanation
n/a
Mark Scheme
ab=02k25k+3=(2k3)(k1)=0k=1,32a \cdot b=0 \\ 2 k^2-5 k+3=(2 k-3)(k-1)=0 \\ k=1, \frac{3}{2}

Q14

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/11
Question Text
Two distinct lines, l1l_1 and l2l_2, intersect at a point PP. The line l1l_1 has vector equation r1=(131)+λ(111)r_1=\left(1\quad3\quad1\right)+\lambda(1\quad-1\quad1), λR\lambda \in R and the line l2l_2 has vector equation r2=(111)+μ(432),μRr_2 = \left(-1\quad1\quad1\right) + \mu\left(4\quad3\quad2\right), \mu\in R. (a) The point A has coordinates (3,1,3)(3,1,3) and lies on l1l_1. Write down the value of λ\lambda corresponding to the point AA.
Total Mark
1
Correct Answer
2
Explanation
n/a
Mark Scheme
λ=2\lambda = 2
Question Text
(b) The point BB has coordinates (3,4,3)(3,4,3) and lies on l2l_2. Let CC be the point on l1l_1 with coordinates (0,4,0)(0,4,0) and DD be the point on l2l_2 with parameter μ=1\mu=-1. Find the area of the quadrilateral CDBACDBA. (a) 12(193+32)\frac{1}{2}(\sqrt{193}+3 \sqrt{2}) (b) 12(383+32)\frac{1}{2}(\sqrt{383}+3 \sqrt{2}) (c) 12(193+92)\frac{1}{2}(\sqrt{193}+9 \sqrt{2}) (d) 12(517+92)\frac{1}{2}(\sqrt{517}+9 \sqrt{2})
Total Mark
8
Correct Answer
(d)
Explanation
n/a
Mark Scheme
Area of CDBACDBA =12CD×DB+12BA×AC= \frac{1}{2}|C D \times D B|+\frac{1}{2}|B A \times A C| 12×((561)×(863)+(030)×(333))=12×((12718)×(909))\frac12\times\left(\left|\left(\begin{matrix}-5\\-6\\-1\end{matrix}\right)\times\left(\begin{matrix}8\\6\\3\end{matrix}\right) \right| +\left|\left(\begin{matrix}0\\-3\\0\end{matrix}\right)\times\left(\begin{matrix}-3\\3\\-3\end{matrix}\right) \right|\right) = \frac12\times\left(\left|\left(\begin{matrix}-12\\7\\18\end{matrix}\right)\times\left(\begin{matrix}9\\0\\9\end{matrix}\right) \right|\right) 12(144+49+324+81+81)=12(11×47+92)12(517+92) \frac{1}{2}(\sqrt{144+49+324}+\sqrt{81+81})=\frac{1}{2}(\sqrt{11 \times 47}+9 \sqrt{2}) \\ \frac{1}{2}(\sqrt{517}+9 \sqrt{2})

Q15

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/2 a
Question Text
Three points in three-dimensional space have coordinates A(0,0,1),B(0,3,0)A(0,0,1), B(0,3,0) and C(3,2,0)C(3,2,0). If the area of the triangle ABCABC can be written as a2\frac{\sqrt{a}}{2} where aZ+a \in Z^{+}, find the value of aa
Total Mark
5
Correct Answer
91
Explanation
n/a
Mark Scheme
area=12AB×ACarea=\frac12\left|\overrightarrow{AB}\times\overrightarrow{AC}\right| (031)×(321)=(139)\left|\left(\begin{matrix}0\\-3\\-1\end{matrix}\right)\times\left(\begin{matrix}3\\2\\-1\end{matrix}\right) \right|=\left|\left(\begin{matrix}-1\\-3\\-9\end{matrix}\right)\right| 12AB×AC=12×91\frac12\left|\overrightarrow{AB}\times\overrightarrow{AC}\right| = \frac12\times\sqrt{91} 912\frac{\sqrt{91}}{2}

Q16

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N18/5/MATHL/HP1/ENG/TZ0/XX/5
Question Text
The vectors aa and bb are defined by a=itk,b=itj+4tka=i-t k, b=i-t j+4 t k where tRt \in R. Find the values of tt for which the angle between aa and bb is obtuse. (a) t<12,t>12t<-\frac{1}{2}, t>\frac{1}{2} (b) t<14,t>14t<-\frac{1}{4}, t>\frac{1}{4} (c) 12<t<12-\frac{1}{2}<t<\frac{1}{2} (d) 14<t<14-\frac{1}{4}<t<\frac{1}{4}
Total Mark
6
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Use of ab=abcosθa \cdot b=|a \| b| \cos \theta ab=(1×1)+(0×t)+(t×4t)=14t2a \cdot b=(1 \times 1)+(0 \times-t)+(-t \times 4 t)=1-4 t^2 θ\theta is obtuse when cosθ<0\cos \theta<0 14t2<0t<12,t>121-4 t^2<0 \\ t<-\frac{1}{2}, t>\frac{1}{2}

Q17

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
N18/5/MATHL/HP1/ENG/TZ0/XX/9
Question Text
Consider a triangle OABOAB such that OO has coordinates (0,0,0)(0,0,0), AA has coordinates (0,2,1)(0,2,1) and BB has coordinates (a,0,2a1)(a, 0,2 a-1) where b<0b<0. Find, in terms of bb, a Cartesian equation of the plane Π\Pi containing this triangle. (a) (2a1)x+ay2az=0(2 a-1) x+a y-2 a z=0 (b) (4a2)x+ay2az=0(4 a-2) x+a y-2 a z=0 (c) (2a1)x+ay+2az=0(2 a-1) x+a y+2 a z=0 (d) (4a2)x+ay+2az=0(4 a-2) x+a y+2 a z=0
Total Mark
5
Correct Answer
(b)
Explanation
n/a
Mark Scheme
Normal vector is obtained by OB×OA\overrightarrow{O B} \times \overrightarrow{O A} OB×OA=(021)×(a02a1)=(4a2a2a)\overrightarrow{O B} \times \overrightarrow{O A} = \left(\begin{matrix}0\\2\\1\end{matrix}\right)\times\left(\begin{matrix}a\\0\\2a-1\end{matrix}\right)=\left(\begin{matrix}4a-2\\a\\-2a\end{matrix}\right) П:(4a2)x+ay2az=0П: (4 a-2) x+a y-2 a z=0

Q18

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/10
Question Text
A square based pyramid has vertices at O(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0)O (0,0,0), A(2,0,0), B(2,2,0), C(0,2,0) and D(0,0,2)D(0,0,2). (a) The Cartesian equation of the plane Π1\Pi_1, passing through the points A,BA, B and DD can be written in the form ax+by+zy=2a x+b y+z y=2 where a,b,cZa, b, c \in Z. Find the value of a+b+ca+b+c.
Total Mark
3
Correct Answer
2
Explanation
n/a
Mark Scheme
Take the cross product of AB\overrightarrow{A B} and AD\overrightarrow{A D} AB×AD=(020)×(202)=(404)\overrightarrow{A B} \times \overrightarrow{A D}=\left(\begin{matrix}0\\2\\0\end{matrix}\right)\times\left(\begin{matrix}-2\\0\\2\end{matrix}\right)=\left(\begin{matrix}4\\0\\4\end{matrix}\right) Π1:4x+4z=8\Pi_1: 4 x+4 z=8 \\ Π1:x+z=2\Pi_1: x+z=2
Question Text
(b) The Cartesian equation of the plane Π2\Pi_2, passing through the points B,CB, C and DD, is y+z=2y+z=2 Find the angle in degrees between the faces ABDABD and BCDBCD.
Total Mark
4
Correct Answer
60
Explanation
n/a
Mark Scheme
Take the normal to the two planes, and find the angle between them (101)(011)=(101)(011)cosθ\left(\begin{matrix}1\\0\\1\end{matrix}\right)\cdot\left(\begin{matrix}0\\1\\1\end{matrix}\right)=\left|\left(\begin{matrix}1\\0\\1\end{matrix}\right)\right|\left|\cdot\left(\begin{matrix}0\\1\\1\end{matrix}\right)\right|\cos\theta 1=2×2×cosθ1=\sqrt{2} \times \sqrt{2} \times \cos \theta cosθ=12\cos \theta=\frac{1}{2}\\ θ=60\theta=60^{\circ}
Question Text
(c) The plane Π3\Pi_3 passes through OO and is normal to the line BDBD. Find the Cartesian equation of Π3\Pi_3. (a) x+y+z=0x+y+z=0 (b) x+yz=0x+y-z=0 (c) xy+z=0x-y+z=0 (d) xyz=0x-y-z=0
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
BD\overrightarrow{B D} has a vector slope of ijki-j-k Thus the equation of the plane of Π3\Pi_3 can be written as xyz=nx-y-z=n. As it passes through OO, xyz=0x-y-z=0
Question Text
(d) Π3\Pi_3 cuts ADAD and BDBD at the points PP and QQ respectively. Given that PP is the midpoint of ADAD.Find the area of the triangle OPQOPQ . (a) 33\frac{\sqrt{3}}{3} (b) 536\frac{5 \sqrt{3}}{6} (c) 22\frac{\sqrt{2}}{2} (d) 324\frac{3 \sqrt{2}}{4}
Total Mark
7
Correct Answer
(a)
Explanation
n/a
Mark Scheme
The angle OPQ=90\mathrm{OPQ}=90 Area of OPQ=12×OP×PQO P Q=\frac{1}{2} \times O P \times P Q Noticing that triangle OQDO Q D is similar to triangle ODBODB. OQOD=OBDBOQ=2223×2=263\frac{O Q}{O D}=\frac{O B}{D B} \\ O Q=\frac{2 \sqrt{2}}{2 \sqrt{3}} \times 2=\frac{2 \sqrt{6}}{3} Since PP is the midpoint of ADA D, P=(1,0,1)OP=1+0+1=2PQ2=OQ2OP2=832=23P=(1,0,1) \\ O P=\sqrt{1+0+1}=\sqrt{2} \\ P Q^2=O Q^2-O P^2=\frac{8}{3}-2=\frac{2}{3} So, 12×PQ×OQ=12×23×2=33\frac{1}{2} \times P Q \times O Q=\frac{1}{2} \times \frac{\sqrt{2}}{\sqrt{3}} \times \sqrt{2}=\frac{\sqrt{3}}{3}

Q19

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M18/5/MATHL/HP1/ENG/TZ2/XX/1
Question Text
The acute angle between the vectors 2i3j6k2i-3 j-6k and 4i3j+k4i-3 j+k is denoted by θ\theta. Find cosθ\cos \theta. (a) 713\frac{7}{13} (b) 2691\frac{26}{91} (c) 2613\frac{\sqrt{26}}{13} (d) 92691\frac{9 \sqrt{26}}{91}
Total Mark
4
Correct Answer
(d)
Explanation
n/a
Mark Scheme
Using cosθ=vwvw\cos \theta=\frac{v \cdot w}{|v||w|} cosθ=(2i3j6k)(4i3j+k)2i3j6k4i3j+k=184926=18726=92691\cos \theta=\frac{(2 i-3 j-6 k) \cdot(4 i-3 j+k)}{|2 i-3 j-6 k \| 4 i-3 j+k|} \\ =\frac{18}{\sqrt{49} \sqrt{26}}=\frac{18}{7 \sqrt{26}} \\ =\frac{9 \sqrt{26}}{91}

Q20

Topic
3.4 Vectors (HL)
Tag
Vectors; Line; Plane; Intersection; Distance; Angle; Dot product; Cross product; Cartesian; Parametric
Source
M18/5/MATHL/HP1/ENG/TZ2/XX/9
Question Text
The points A,B,CA, B, C and DD have position vectors a,b,ca, b, c and dd, relative to the origin OO . It is given that AB=DC\overrightarrow{A B}=\overrightarrow{D C}. The position vectors OA,OB,OC\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C} and OD\overrightarrow{O D} are given by a=i+2j3kb=3ij+kc=qi+j+2kd=i+rj2ka=i+2 j-3 k \quad b=3 i-j+k \quad c=q i+j+2 k \quad d=-i+r j-2 k Where p,qp, q, and rr are constants. (a) Find the value of (i) qq Total Mark: 3 Correct Answer: 1 Explanation: n/a Mark Scheme: Use of AB=DC\overrightarrow{A B}=\overrightarrow{D C} (2i3j+4k)=((q+1)i+(1r)j+4k)(2 i-3 j+4 k)=((q+1) i+(1-r) j+4 k) so q=1,r=4q=1, r=4 (ii) r Total Mark: 2 Correct Answer: 4 Explanation: n/a Mark Scheme: n/a
Question Text
(b) Find the area of ABCDABCD.
Total Mark
5
Correct Answer
15
Explanation
n/a
Mark Scheme
Use of AD=BC\overrightarrow{A D}=\overrightarrow{B C} (this can be deduced from the fact that AB=DC\overrightarrow{A B}=\overrightarrow{D C}) It can be noticed that ABCDA B C D is a parallelogram so the area is equivalent to AB×AD|\overrightarrow{A B} \times \overrightarrow{A D}| AB=2i3j+4k\overrightarrow{A B}=2 i-3 j+4 k AD=2i+2j+k\overrightarrow{A D}=-2 i+2 j+k Area=AB×AD=11i10j2k=225=15Area = |\overrightarrow{A B} \times \overrightarrow{A D}|=|-11 i-10 j-2 k|=\sqrt{225}=15