Mission
home

1.5 Complex Numbers (HL)

Q1

Topic
1.5 Complex Numbers
Tag
Complex number; Modulus; Argument; Imaginary number; Conjugate; De Moivre's theorem
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/8
Question Text
Determine the root of the equation (z+2i)3=216i,zC(z + 2i)³ = 216i, z∈C, for which z=a3+biz = a√3 + bi where a,bZ+a,b∈Z+. Find a+ba + b.
Total Mark
7
Correct Answer
4
Explanation
n/a
Mark Scheme
Step 1: Simplify Suppose w\textit{w} = z\textit{z} + 2i\textit{i}, w3=216i\textit{w}^{3} = 216\textit{i} so, w3=216\textit{w}^{3} = 216(coscosπ2\frac{\pi }{2}+ιsinπ2\iota sin\frac{\pi }{2}) = 216(coscos(π2\frac{\pi }{2}+2πk2\pi \textit{k}) + i\textit{i}sinsin(π2+2πk\frac{\pi }{2}+2\pi \textit{k})), Tip 1: When finding roots of complex numbers just assume that there's an extra 2πk, and later using DeMovire's, divide by the necessary number. In this problem divide by 3. The roots of w\textit{w} therefore are 6(coscos(π6\frac{\pi }{6}+2πk3\frac{2\pi \textit{k}}{3}) + isin(π6+2πk3)\textit{i}sin(\frac{\pi }{6}+\frac{2\pi \textit{k}}{3})), where k\textit{k} = 0, 1, 2 So, w\textit{w} = 6(cos(π6)+isin(π6))6(cos(\frac{\pi }{6})+\textit{i}sin(\frac{\pi }{6})),(cos(5π6)+isin(5π6))(cos(\frac{5\pi }{6})+\textit{i}sin(\frac{5\pi }{6})),(cos(9π6)+ιsin(9π6))(cos(\frac{9\pi }{6})+\iota sin(\frac{9\pi }{6})) w\textit{w} = 6(32+12i)\left ( \frac{\sqrt{3}}{2}+\frac{1}{2}\textit{i}\right ),4(32+12i)\left ( \frac{-\sqrt{3}}{2}+\frac{1}{2}\textit{i}\right ),4(12i-\frac{1}{2}\textit{i} ) The only root of w\textit{w} with both positive integers is 6(32+12ι)\left ( \frac{\sqrt{3}}{2}+\frac{1}{2}\iota \right ) = 33+3i3\sqrt{3}+3\textit{i}. As w\textit{w} = z\textit{z} + 2i\textit{i}, z\textit{z} = 33+3i3\sqrt{3}+3\textit{i}2i-2\textit{i} =33+i 3\sqrt{3}+\textit{i} So, a \textit{a} = 3, b\textit{b} = 1 Thus, a+b\textit{a}+\textit{b} = 4 Answer = 4

Q2

Topic
1.5 Complex Numbers (HL)
Tag
Complex number; Modulus; Argument; Imaginary number; Conjugate; De Moivre's theorem
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/2
Question Text
Consider the complex numbers z1=2+23i,z2=2+2iz_{1}=2+2\sqrt{3}\textit{i},z_{2}=\sqrt{2}+\sqrt{2}\textit{i} and w=z1z2w=\frac{z_{1}}{z_{2}}, (a) Find (i) the modulus of ww; Total Mark: 2 Correct Answer: 2 Explanation: n/a Mark Scheme: n/a (ii) the value of aa given that the argument of w=(πa)w = ( \frac{\pi }{a}) where aZ+a∈ℤ^+. Total Mark: 2 Correct Answer: 12 Explanation: n/a Mark Scheme: arg(w)=π3π4=π12arg(w)= \frac{π}{3} - \frac{π}{4} = \frac{π}{12}
Question Text
(b) Find the smallest positive integer value of nn, such that wnwⁿ is a real number.
Total Mark
2
Correct Answer
12
Explanation
n/a
Mark Scheme
wn=2n(cos(π12)+isin(π12))12w^n=2^{n}\left ( \cos\left (\frac{π}{12} \right ) +i\sin\left (\frac{π}{12} \right ) \right )^{12}, applying de Moivre’s wn=2n(cos(nπ12)+isin(nπ12))12w^n=2^{n}\left ( \cos\left (\frac{nπ}{12} \right ) +i\sin\left (\frac{nπ}{12} \right ) \right )^{12} , as sin(nπ12)=0\sin\left (\frac{nπ}{12} \right )=0, when n=12n=12

Q3

Topic
1.5 Complex Numbers (HL)
Tag
Complex number; Modulus; Argument; Imaginary number; Conjugate; De Moivre's theorem
Source
N16-TZ0-P1-11(HL)
Question Text
(a) Given that z\textit{z}² = 16i\textit{i}, where z\textit{z} ∈ C, select the correct choice with the two values of z\textit{z}. (a) 4(cosπ4+sinπ4)4\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right), 4(cos(5π4)+sin(5π4))4\left(\cos \left(\frac{5 \pi}{4}\right)+\sin \left(\frac{5 \pi}{4}\right)\right) (b) 4(cos3π4+sin3π4)4\left(\cos \frac{3 \pi}{4}+\sin \frac{3 \pi}{4}\right), 4(cos(7π4)+sin(7π4))4\left(\cos \left(\frac{7 \pi}{4}\right)+\sin \left(\frac{7 \pi}{4}\right)\right) (c) 16(cos(π4)+sin(π4))16\left(\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)\right), 16(cos(5π4)+sin(5π4))16\left(\cos \left(\frac{5 \pi}{4}\right)+\sin \left(\frac{5 \pi}{4}\right)\right) (d) 16(cos(3π4)+sin(3π4))16\left(\cos \left(\frac{3 \pi}{4}\right)+\sin \left(\frac{3 \pi}{4}\right)\right), 16(cos(7π4)+sin(7π4))16\left(\cos \left(\frac{7 \pi}{4}\right)+\sin \left(\frac{7 \pi}{4}\right)\right)
Total Mark
3
Correct Answer
a
Explanation
n/a
Mark Scheme
z2z^2=16(cos(π2+2πk)+isin(π2+2πk))\left(\cos \left(\frac{\pi}{2}+2 \pi k\right)+i \sin \left(\frac{\pi}{2}+2 \pi k\right)\right) z\textit{z} =4(cos(π2+2πk)+isin(π2+2πk))12\left(\cos \left(\frac{\pi}{2}+2 \pi k\right)+i \sin \left(\frac{\pi}{2}+2 \pi k\right)\right)^{\frac{1}{2}} Using de Moivre's, z\textit{z}=4(cos(π4+πk)+isin(π4+πk))4\left(\cos \left(\frac{\pi}{4}+\pi k\right)+i \sin \left(\frac{\pi}{4}+\pi k\right)\right) Answer: a
Question Text
(b) Consider the complex numbers z1\textit{z}_{1} =22+22 \sqrt{2}+22i\sqrt{2} i and z2\textit{z}_{2}=2(cos(π6)+isin(π6))\sqrt{2}\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right). i. z1\quad z_1 can be written in the form r\textit{r}(cosπk+isinπk)\left(\cos \frac{\pi}{k}+i \sin \frac{\pi}{k}\right) where r\textit{r}, k\textit{k} Z+\in Z^{+}. Find the value of r+k\textit{r} + \textit{k} Total Mark : 2 Correct Answer : 8 Exlplanation : na Mark Scheme : r \textit{r} =(22)2+(22)2\sqrt{(2 \sqrt{2})^2+(2 \sqrt{2})^2}=4 z1z_1=4(22+22i)4\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)=4(cosπ4+isinπ4)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) k\textit{k} =4 Thus, r+k=4+4=8\textit{r} + \textit{k}=4+4=8 ————————————- ii. Choose the correct value of z1z2\frac{\textit{z}_{1}}{\textit{z}_{2}} (a) 22+22i\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i (b) 3212i\frac{\sqrt{3}}{2}-\frac{1}{2} i (c) 3+1+i(31)\sqrt{3}+1+i(\sqrt{3}-1) (d) 32+12i\frac{\sqrt{3}}{2}+\frac{1}{2} i Total Mark : 3 Correct Answer : c Explanation : na Mark Scheme : Step 1: Expand Tip 1: Utilize the formula booklet: compound angle identities z1z2\frac{z_1}{z_2}=42(cos(π4π6)+isin(π4π6))\frac{4}{\sqrt{2}}\left(\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)\right) =42(cosπ4cosπ6+sinπ4sinπ6+i(sinπ4cosπ6sinπ6cosπ4))\frac{4}{\sqrt{2}}\left(\cos \frac{\pi}{4} \cos \frac{\pi}{6}+\sin \frac{\pi}{4} \sin \frac{\pi}{6}+i\left(\sin \frac{\pi}{4} \cos \frac{\pi}{6}-\sin \frac{\pi}{6} \cos \frac{\pi}{4}\right)\right) Step 2: Simplify =42(22×32+22×12+i(32×2212×22))\frac{4}{\sqrt{2}}\left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \times \frac{1}{2}+i\left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}-\frac{1}{2} \times \frac{\sqrt{2}}{2}\right)\right) =42(6+24+i(624))\frac{4}{\sqrt{2}}\left(\frac{\sqrt{6}+\sqrt{2}}{4}+i\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)\right) =3+1+i(31)\sqrt{3}+1+i(\sqrt{3}-1) Answer: c ———————————— iii. Hence find the value of c+d c + d if tanπ12tan\frac{\pi }{12} can be written in the form cc - d3d\sqrt{3}, where c, d ∈ Z. Total Mark : 4 Correct Answer : 3 Exlplanation : na Mark Scheme : Step 1: Consider the given information Tip 1: Utilize the previous part(s) if the question says "hence" tanπ12=sinπ12cosπ12z1z2=22(cos(π4π6)+isin(π4π6))=3+1+i(31)\tan \frac{\pi}{12}=\frac{\sin \frac{\pi}{12}}{\cos \frac{\pi}{12}} \\ \frac{z_1}{z_2}=2 \sqrt{2}\left(\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)\right)=\sqrt{3}+1+i(\sqrt{3}-1) Step 2: Combine the given information As π12=π4π6\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}, z1z2=22(cosπ12+isinπ12)=3+1+i(31)\frac{z_1}{z_2}=2 \sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)=\sqrt{3}+1+i(\sqrt{3}-1) 22cosπ12=3+122sinπ12=312 \sqrt{2} \cos \frac{\pi}{12}=\sqrt{3}+1 \\ 2 \sqrt{2} \sin \frac{\pi}{12}=\sqrt{3}-1 Which means tanπ12=22sinπ1222cosπ12=313+1\tan \frac{\pi}{12}=\frac{2 \sqrt{2} \sin \frac{\pi}{12}}{2 \sqrt{2} \cos \frac{\pi}{12}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} (31)(31)(3+1)(31)=23\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=2-\sqrt{3} c=2,d=1c=2, d=1 Thus, c+dc+d=3 ———————————- iv. Find the smallest value nn > 0 such that (z2)n(z₂)ⁿ is a positive real number. Total Mark : 2 Correct Answer : 12 Explanation : na Mark Scheme : Using DeMoivre's z2n=2n(cos(nπ6)+isin(nπ6))z_2^n=\sqrt{2}^n\left(\cos \left(\frac{n \pi}{6}\right)+i \sin \left(\frac{n \pi}{6}\right)\right) z2nz_2^n is a positive real number when nn=12

Q4

Topic
1.5 Complex Numbers
Tag
Source
N16-TZ0-P1-12(HL)
Question Text
Let be one of the non-real solutions of the equation z4=1z⁴ = 1. Determine the value of (a) 1 + ω + ω² + ω³
Total Mark
3
Correct Answer
0
Explanation
na
Mark Scheme
1+ω+ω2+ω3=1ω41ω=0 as ω11+\omega+\omega^2+\omega^3=\frac{1-\omega^4}{1-\omega}=0 \text { as } \omega \neq 1
Question Text
(b) 1 + ω* + (ω*)² + (ω*)³
Total Mark
1
Correct Answer
0
Explanation
na
Mark Scheme
This is the conjugate of 1+ω+ω2+ω31 + ω + ω² + ω³. The conjugate of 0 is 0

Q5

Topic
1.5 Complex Numbers
Tag
Sequences; Series; Arithmetic; Geometric; Sigma; Compound interest; Finance
Source
Question Text
Consider the complex numbers pp = 4 - 3ii and qq = xx + (xx - 7)ii, where xx R R. (a) Find the sum of the values of xx that satisfy the equation | pp | = | qq |.
Total Mark
5
Correct Answer
7
Explanation
na
Mark Scheme
Step 1: Consider the given information p=q|p|=|q| where p=43i and q=x+(x7)i p=4-3 i \text { and } q=x+(x-7) i Step 2: Combine the given information Tip 1: The variable to be found is xx, so we should aim to make an equation that involves xx. p=q|p|=|q| 42+32=x2+(x7)2\Rightarrow \sqrt{4^2+3^2}=\sqrt{x^2+(x-7)^2} 25=2x214x+4925=2 x^2-14 x+49 2x214x+24=02 x^2-14 x+24=0 (x3)(x4)=0(x-3)(x-4)=0 xx = 3 or 4 Thus, the sum of the values of xx that satisfy the equation is: 7 .
Question Text
(b) The solution to the inequality Re⁡(pqpq) - 13 < Im⁡(pqpq) can be written as xx< kk, find the value of kk.
Total Mark
4
Correct Answer
1
Explanation
na
Explanation
Step 1: Consider the given information Re(⁡(pq) + 8 < (Im(⁡(pq))² where p = 4 - 3i and q = x + (x - 7)i Step 2: Combine the given information pq = (4 - 3i)(x + (x - 7)i) = (7x - 21) + (x - 28)i Re⁡(pq) + 8 < Im⁡(pq) ⇒ (7x - 21) + 8 < (x - 28) 6x < 6, x < 1 Answer: 1

Q6

Topic
1.5 Complex Numbers
Tag
Source
M16-TZ1-P1-12(HL)
Question Text
(a) The value of 2\sqrt{2} ×(cos(π4)isin(π4))5\times\left(\cos \left(\frac{\pi}{4}\right)-i \sin \left(\frac{\pi}{4}\right)\right)^5 can be written as a+bia+b i where aa, bb Z\in \mathbb{Z}. Find the value of a+ba+b.
Total Mark
3
Correct Answer
0
Explanation
na
Mark Scheme
Tip 1: Utilize the formula booklet: de Moivre's 2×(cos(π4)+isin(π4))5=2(cos(5π4)+isin(5π4))\sqrt{2} \times\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)^5=\sqrt{2}\left(\cos \left(\frac{-5 \pi}{4}\right)+i \sin \left(\frac{-5 \pi}{4}\right)\right) -1+ii Answer: a=1,b=1a=-1, b=1
Question Text
(b) Let z=cosθ+isinθz = cos⁡θ + isin⁡θ. Choose the correct expression for (z)n+(z)n,nZ+(z)ⁿ + (z*)ⁿ , n ∈ Z+ where zz* is the complex conjugate of zz. (a) 2cos(nθ)2 cos⁡(nθ) (b) 2isin(nθ)2i sin(nθ) (c) ncos(θ)+nisin(θ) n cos(θ) + ni sin(θ) (d) ncos(θ)nisin(θ)n cos(θ) - ni sin(θ)
Total Mark
2
Correct Answer
a
Explanation
na
Mark Scheme
na
Question Text
(c) (i) Compute the value of zz x zz^*. Total Mark : 2 Correct Answer : 1 Explanation : na Mark Scheme : zzz z^* = (cosθ+isinθcos⁡θ + isin⁡θ)(cosθisinθcos⁡θ - isin⁡θ) = cos2θ+sin2θcos²θ + sin²⁡θ = 1 Thus, answer is 1 (ii). cos3θ=acos3θbcosθcos⁡3θ = acos³θ - bcos⁡θ where a,bZ+a, b ∈ ℤ+. By considering the binomial expansion of (z+z)3(z+z^*)³, find the value of a+ba + b. Total Mark : 3 Correct Answer : 7 Explanation : na Mark Scheme : Tip 1: Utilize the information found in previous parts, (z+z)3(z+z^*)^3=z3z^3+3z2z3 z^2 z^*+3z(z)2+(z)33z(z^*)^2 + (z^*)^3 =z3+3z+3z+(z)3 z^3 + 3z + 3z^* + (z^*)^3 Step 1: Expand utilizing given information (z+z)3(z+z^*)^3=(2cosθ)3(2 \cos \theta)^3 From part (b) we know (z)n(z)^n+(z)n(z^*)^n=2cos(nθ) \cos (n \theta) z3+3z+3z+(z)3=2cos3θ+6cosθz^3+3 z+3 z^*+(z^*)^3=2 \cos 3 \theta+6 \cos \theta 2cos3θ+6cosθ=(2cosθ)32 \cos 3 \theta+6 \cos \theta=(2 \cos \theta)^3 cos3θ=4cos3θ3cosθ\cos 3 \theta=4 \cos ^3 \theta-3 \cos \theta aa=4, bb=3 Thus, aa+bb=7
Question Text
(d) Hence solve 4cos3θ4cos³θ + 2sin2θ2sin²θ - 3cosθ3cosθ - 1 = 0 for 0 < θ < π2\frac{\pi }{2}. (a) θ\theta = π4\frac{\pi }{4} (b) θ\theta = 2π5\frac{2\pi }{5} (c) θ\theta = π7\frac{\pi }{7} (d) θ\theta = 3π7\frac{3\pi }{7}
Total Mark
6
Correct Answer
b
Explanation
na
Mark Scheme
Step 1: Rearrange such that the equation is more favorable Tip 1: Notice that cos3θ \cos 3 \theta= 4cos3θ4\cos ^3 \theta - 3cosθ3 \cos \theta can be utilized 4cos3θ4 \cos ^3\theta+2sin2θ2 \sin ^2 \theta - 3cosθ3 \cos \theta - 1 = 0 cos3θ\cos 3 \theta=1 - 2sin2θ2 \sin ^2 \theta Noticing that 1-2sin2θ2 \sin ^2 \theta=cos2θ\cos 2 \theta cos3θ\cos 3 \theta=cos2θ\cos 2 \theta cos3θ\cos 3 \theta=cos(2π2θ)\cos (2 \pi-2 \theta) 3θ3 \theta=2π2θ2 \pi-2 \theta θ\theta=2π5\frac{2 \pi}{5} Answer: (B)

Q7

Topic
1.5 Complex Numbers
Tag
Source
M16-TZ2-P1-12(HL)
Question Text
(a) Which is a root of the equation z5z⁵ - 1 = 0 , zzCC? (a) cosπ2+isinπ2\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} (b) cos3π2+isin3π2\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2} (c) cosπ3+isinπ3\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} (d) cos2π5+isin2π5\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}
Total Mark
2
Correct Answer
d
Explanation
na
Mark Scheme
Rewrite 1 in its complex form, z5z^5=cos(2πk)\cos (2 \pi k)+isin(2πk)i \sin (2 \pi k), kZk \in \mathbb{Z} Notice that de Moivre's can be applied, zz=cos(2πk5)\cos \left(\frac{2 \pi k}{5}\right)+isin(2πk5)i \sin \left(\frac{2 \pi k}{5}\right) The only option in this form is (D) Answer: (D)
Question Text
(b) (i) Which of the following is the expansion of (ww - 1)(1 + ww + w2 + w3 + w4w⁴) ? (a) w5w⁵ - 1 (b) 1 + w2 + w4w⁴ (c) ww + w3 +w5 w⁵ (d) 1 + ww + w2 +w3 + w4w⁴ + w5w⁵ Total Mark : 1 Correct Answer : a Explanation : na Mark Scheme : (ww-1)(1+ww+w2w^2+w3w^3+w4w^4)=ww+w2w^2+w3w^3+w4w^4+w5w^5-1-ww-w2w^2-w3w^3-w4w^4 =w5w^5-1 Answer: (A) (ii) Hence write down the value of 1 + ww + w2 + w3 +w4 w⁴. Total Mark : 2 Correct Answer : 0 Explanation : na Mark Scheme : Consider the given information, w5w⁵ - 1 = (ww - 1)(1 +w w + w2 + w3 + w4w⁴) = 0 and ww - 1 ≠ 0 So, 1 + ww + w2 + w3 + w4w⁴ = 0 Answer: 0

Q8

Topic
1.5 Complex Numbers
Tag
Source
M15-TZ2-P1-7(HL)
Question Text
(a) The equation 16z4z⁴ + 81 = 0 , zzCC has four distinct complex roots. Which of the following are the roots the equation. (Two answers) (a) 32(cosπ4+isinπ4)\frac{3}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) (b) 32(cos5π4+isin5π4)\frac{3}{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right) (c)32(cosπ2+isinπ2) \frac{3}{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) (d) 32(cosπ+isinπ)\frac{3}{2}(\cos \pi+i \sin \pi) (e)32(cos3π2+isin3π2) \frac{3}{2}\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)
Total Mark
6
Correct Answer
a,b
Explanation
na
Mark Scheme
Rearrange the given equation such that it is favorable (i.e able to apply de Moivre's) z4z^4=8116-\frac{81}{16} =8116(cosπ+isinπ)\frac{81}{16}(\cos \pi+i \sin \pi)=8116(cos(π+2nπ)+isin(π+2nπ))\frac{81}{16}(\cos (\pi+2 n \pi)+i \sin (\pi+2 n \pi)) zz = 32\frac{3}{2}(cos(π+2nπ4)+isin(π+2nπ4))\left(\cos \left(\frac{\pi+2 n \pi}{4}\right)+i \sin \left(\frac{\pi+2 n \pi}{4}\right)\right) z1z_1=32(cosπ4+isinπ4)z2=32(cos3π4+isin3π4)z3=32(cos5π4+isin5π4)\frac{3}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) z_2=\frac{3}{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) z_3=\frac{3}{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right), z4z_4=32(cos7π4+isin7π4)\frac{3}{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right) Answer: (A), (B)
Question Text
(b) The roots are represented by the vertices of a square in an Argand diagram. The area of this square can be written in the form ab \frac{\textit{a}}{\textit{b}} where a and b are positive integers in lowest term. Compute the value of aa + bb.
Total Mark
3
Correct Answer
11
Explanation
na
Mark Scheme
Notice that the diagonal of this square is 32\frac{3}{2} x 2 = 3 The area is therefore, 3 x 3 x (12\frac{1}{2}) = 92\frac{9}{2} Answer: 11

Q9

Topic
1.5 Complex Numbers
Tag
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/13a
Question Text
Given that (1+itanθ)n+(1itanθ)n=2cosnθcosnθ,cosθ0(1+i \tan \theta)^n+(1-i \tan \theta)^n=\frac{2 \cos n \theta}{\cos ^n \theta}, \cos \theta \neq 0, which is a possible root of the equation (1+z)3+(1z)3=0,zC (1+z)^3+(1-z)^3=0, z \in C. (a) cosπ3+isinπ3\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} (b) cos4π3+isin4π3\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} (c) itan2π3i \tan \frac{2 \pi}{3} (d) 1itan4π31-i \tan \frac{4 \pi}{3} (e) 1+itan4π31+i \tan \frac{4 \pi}{3}
Total Mark
4
Correct Answer
c
Explanation
n/a
Mark Scheme
Notice (1+z)3+(1z)3(1+z)^3+(1-z)^3=00 is of the form (1+itanθ)n+(1itanθ)n(1+i \tan \theta)^n+(1-i \tan \theta)^n Suppose zz = itanθi \tan \theta (11+itanθ)3i \tan \theta)^3+(1itanθ)3(1-i \tan \theta)^3=2cos(3×θ)cos3θ=0cos(3θ)=0\frac{2 \cos (3 \times \theta)}{\cos ^3 \theta}=0 \\ \cos (3 \theta)=0 θ=2πk3\theta=\frac{2 \pi k}{3} So, zz=itan(2πk3)\operatorname{\textit{i}tan}\left(\frac{2 \pi k}{3}\right) Answer: C

Q10

Topic
1.5 Complex Numbers
Tag
Complex number; Modulus; Argument; Imaginary number; Conjugate; De Moivre's theorem
Source
M14/5/MATHL/HP1/ENG/TZ2/XX/7
Question Text
Consider the complex numbers uu=3+4i i and vv= 4+3i i . (a) Given that 1u\frac{1}{u}+1v\frac{1}{v}=14w\frac{14}{w}, where ww can be expressed in the form a+bi,a+b i, aa, bb \in RR, find the value of aa+bb.
Total Mark
3
Correct Answer
50
Explanation
na
Mark Scheme
Consider the given information, and rearrange, 13+4i\frac{1}{3+4 i}+14+3i\frac{1}{4+3 i}=34i9+16\frac{3-4 i}{9+16}+43i16+9\frac{4-3 i}{16+9}=10w\frac{10}{w} 14w\frac{14}{w}=77i25\frac{7-7 i}{25} ww=501i\frac{50}{1-i}=50(1+i)1+1\frac{50(1+i)}{1+1}=25+25i25+25 i aa=25, bb=25 Thus, aa+bb=50.
Question Text
(b) If ww^*=reiθr e^{i \theta}, which of the following are possible values of rr and θ\theta ? (a) rr=14, θ\theta=π4\frac{\pi}{4} (b) r r=14214 \sqrt{2}, θ\theta=π4-\frac{\pi}{4} (c) rr=25, θ\theta=π4\frac{\pi}{4} (d) rr=25225 \sqrt{2}, θ=π4\theta=-\frac{\pi}{4}
Total Mark
3
Correct Answer
d
Explanation
na
Mark Scheme
ww^*=25-25i i=252(cos(π4)+isin(π4))25 \sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right) zz=252eπ4i25 \sqrt{2} e^{-\frac{\pi}{4} i} Answer: D

Q11

Topic
1.5 Complex Numbers
Tag
Source
M13-TZ1-P1-1(HL)
Question Text
(a) (i) If ww = 2+2i\sqrt{2}+\sqrt{2}\textit{i} compute the modulus of ww. Total Mark: 1 Correct Answer : 2 Explanation: na Mark Scheme: ww = 2(coscos(π4\frac{\pi }{4}) + iisinsin(π4\frac{\pi }{4})) (ii) Which of the following is the argument of ww? (a) π2\frac{\pi }{2} (b) π3\frac{\pi }{3} (c) π4\frac{\pi }{4} (d) π6\frac{\pi }{6} Total Mark : 1 Correct Answer: c Explanation: na Mark Scheme: ww = 2(coscos(π4\frac{\pi }{4}) + isinisin(π4\frac{\pi }{4}))
Question Text
(b) Given zz=cos7π6\cos \frac{7 \pi}{6}+isin7π6i \sin \frac{7 \pi}{6}, compute the value of w4w^4z6z^6
Total Mark
4
Correct Answer
16
Explanation
n/a
Mark Scheme
w4=(2(cosπ4+isinπ4))4=16(cosπ+isinπ)=16z6=(cos7π6+isin7π6)6=cos7π+isin7π=1w4z6=16w^4=\left(2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^4 =16(\cos \pi+i \sin \pi)=-16 \\ z^6=\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)^6 =\cos 7 \pi+i \sin 7 \pi=-1 \\ w^4 z^6 =16

Q12

Topic
1.5 Complex Numbers
Tag
Source
M13-TZ2-P1-13(HL)
Question Text
Which equation has the complex roots z1=3+iz_1=\sqrt{3}+i,z2=3+i z_2=-\sqrt{3}+i and z3=2iz_3=-2 i ? (a) z=8iz=8 i (b) z=8iz=-8 i (c) z=8z=8 (d) z=8z=-8
Total Mark
4
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Convert each complex numbers to its modulus argument form, z1=2cis(π6),z2=2cis(5π6),z3=2cis(9π6)z_1=2 \operatorname{cis}\left(\frac{\pi}{6}\right), z_2=2 \operatorname{cis}\left(\frac{5 \pi}{6}\right), z_3=2 \operatorname{cis}\left(\frac{9 \pi}{6}\right) Notice that the modulus is 2 , and the argument differs by 4π6\frac{4 \pi}{6}, z13=(2cis(π6))3=8cis(π2)=8iz_1^3=\left(2 \operatorname{cis}\left(\frac{\pi}{6}\right)\right)^3=8 \operatorname{cis}\left(\frac{\pi}{2}\right)=8 i Thus, z=8iz=8 i

Q13

Topic
1.5 Complex Numbers
Tag
Source
n/a
Question Text
(a) Select the correct solutions of the equation z5=1z^5=1 for zCz \in C. (a) cos(π5)+isin(π5)\cos \left(\frac{\pi}{5}\right)+i \sin \left(\frac{\pi}{5}\right) (b) cos(2π5)+isin(2π5)\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right) (c) cos(3π5)+isin(3π5)\cos \left(\frac{3 \pi}{5}\right)+i \sin \left(\frac{3 \pi}{5}\right) (d) cos(4π5)+isin(4π5)\cos \left(\frac{4 \pi}{5}\right)+i \sin \left(\frac{4 \pi}{5}\right) (e) cos(π)+isin(π)\cos (\pi)+i \sin (\pi)
Total Mark
4
Correct Answer
(b), (d)
Explanation
n/a
Mark Scheme
z=(cos(2πn)+isin(2πn))15z=(\cos (2 \pi n)+i \sin (2 \pi n))^{\frac{1}{5}} \\z=cis(2πn5),n=0,1,2,3,4z=\operatorname{cis}\left(\frac{2 \pi n}{5}\right), n=0,1,2,3,4
Question Text
(b) If ww is the solution to z5=1z^5=1 with least positive argument, which is the argument of 1+w1+w? (a) π10\frac{\pi}{10} (b) π5\frac{\pi}{5} (c) 3π10\frac{3 \pi}{10} (d) 2π5\frac{2 \pi}{5}
Total Mark
6
Correct Answer
(b)
Explanation
n/a
Mark Scheme
ww has argument 2π5\frac{2 \pi}{5}, and suppose 1+w1+w has argument θ\theta 1+w=1+cos(2π5)+isin(2π5)tanθ=sin(2π5)1+cos(2π5)\begin{gathered} 1+w=1+\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right) \\ \tan \theta=\frac{\sin \left(\frac{2 \pi}{5}\right)}{1+\cos \left(\frac{2 \pi}{5}\right)} \end{gathered} Using the double angle identity, tanθ=2sin(π5)cos(π5)2cos2(π5)=sin(π5)cos(π5)=tan(π5)θ=π5\begin{gathered} \tan \theta=\frac{2 \sin \left(\frac{\pi}{5}\right) \cos \left(\frac{\pi}{5}\right)}{2 \cos ^2\left(\frac{\pi}{5}\right)}=\frac{\sin \left(\frac{\pi}{5}\right)}{\cos \left(\frac{\pi}{5}\right)}=\tan \left(\frac{\pi}{5}\right) \\ \theta=\frac{\pi}{5} \end{gathered}
Question Text
(c) z22zcos(2π5)+1z^2-2 z \cos \binom{2 \pi}{5}+1 is a quadratic factor of the polynomial z51z^5-1. What is the other quadratic factors with real coefficients? Options: (a) z2+2zcos(2π5)+1 z^2+2 z \cos \left(\frac{2 \pi}{5}\right)+1 (b) z2+2zcos(4π5)+1z^2+2 z \cos \left(\frac{4 \pi}{5}\right)+1 (c) z22zcos(3π5)+1z^2-2 z \cos \left(\frac{3 \pi}{5}\right)+1 (d) z22zcos(4π5)+1z^2-2 z \cos \binom{4 \pi}{5}+1
Total Mark
7
Correct Answer
(d)
Explanation
n/a
Mark Scheme
Note that since roots occur in conjugate pairs, z51 z^5-1 has a quadratic factor, (z(cos(4π5)+isin(4π5)))×(z(cos(4π5)isin(4π5)))=z22zcos(4π5)+1\left(z-\left(\cos \left(\frac{4 \pi}{5}\right)+i \sin \left(\frac{4 \pi}{5}\right)\right)\right) \times\left(z-\left(\cos \left(\frac{4 \pi}{5}\right)-i \sin \left(\frac{4 \pi}{5}\right)\right)\right)=z^2-2 z \cos \left(\frac{4 \pi}{5}\right)+1

Q14

Topic
1.5 Complex Numbers
Tag
Source
N19/5/MATHL/HP1/ENG/TZ1/XX/5
Question Text
(a) Select the correct root(s) of the equation z4=16z^4=-16, where zCz \in C. (a) 2cis(π2)2 \operatorname{cis}\left(\frac{\pi}{2}\right) (b) 2cis(3π4)2 \operatorname{cis}\left(\frac{3 \pi}{4}\right) (c) 2cis(π)2 \operatorname{cis}(\pi) (d) 22cis(π4)2 \sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right) (e) 22cis(π2)2 \sqrt{2} \operatorname{cis}\left(\frac{\pi}{2}\right)
Total Mark
5
Correct Answer
(b)
Explanation
n/a
Mark Scheme
Write in modulus argument form, z4=16(cos(π+2πn)+isin(2πn)z^4=16(\cos (\pi+2 \pi n)+i \sin (2 \pi n) Apply de Moivre's, z=2cis(π4+πn2) where n=0,1,2,3z=2 \operatorname{cis}\left(\frac{\pi}{4}+\frac{\pi n}{2}\right) \text { where } n=0,1,2,3
Question Text
(b) The solutions form the vertices of a polygon in the complex plane. Find the area of the polygon.
Total Mark
2
Correct Answer
8
Explanation
n/a
Mark Scheme
Notice that the diagonal of this square is 4 The area is therefore, 4×4×0.5=84 \times 4 \times 0.5 = 8

Q15

Topic
1.5 Complex Numbers
Tag
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/11
Question Text
Consider w=2(cosπ6+isinπ6)w=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) (a) Select the answer choice that correctly represents w2w^2 and w3w^3 in modulus-argument form. (a) w=2(cosπ6+isinπ6)w=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) (b) w2=4(cosπ6+isinπ6),w3=8(cosπ6+isinπ6)w^2=4\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right), w^3=8\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) (c) w2=2(cosπ3+isinπ3),w3=2(cosπ2+isinπ2)w^2=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right), w^3=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) (d) w2=4(cosπ3+isinπ3),w3=8(cosπ2+isinπ2)w^2=4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right), w^3=8\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
Use de Moivre's, w2=(2(cosπ6+isinπ6))2,w3=(2(cosπ6+isinπ6))3w2=4(cosπ3+isinπ3),w3=8(cosπ2+isinπ2)w^2=\left(2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right)^2, w^3=\left(2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right)^3 \\ w^2=4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right), w^3=8\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)
Question Text
(b) On an Argand diagram the points represented by the origin, w1,w2,w3,w4w¹,w², w³,w⁴ form the vertices of a pentagon, P. What is the area of P?
Total Mark
4
Correct Answer
42
Explanation
n/a
Mark Scheme
Divide the pentagon into three triangles, each with a vertex on the origin, Use of triangle area =12absinC=\frac{1}{2} a b \sin C, Area of P=12×2×4×sinπ6+12×4×8×sinπ6+12×8×16×sinπ6=42P=\frac{1}{2} \times 2 \times 4 \times \sin \frac{\pi}{6}+\frac{1}{2} \times 4 \times 8 \times \sin \frac{\pi}{6}+\frac{1}{2} \times 8 \times 16 \times \sin \frac{\pi}{6}=42

Q16

Topic
1.5 Complex Numbers
Tag
Source
M18/5/MATHL/HP1/ENG/TZ2/XX/7
Question Text
Consider the distinct complex numbers z=a+ib,w=c+idz = a + ib , w = c + id , where a,b,c,dRa, b, c, d ∈ R. Find the the value of the real part of zwz+w\frac{z-w}{z+w} when z=w|z|=|w|.
Total Mark
6
Correct Answer
0
Explanation
n/a
Mark Scheme
Consider the given information, zwz+w=(ac)+i(bd)(a+c)+i(b+d)\frac{z-w}{z+w} =\frac{(a-c)+i(b-d)}{(a+c)+i(b+d)} \\ zwz+w=(ac)+i(bd)(a+c)+i(b+d)×(a+c)i(b+d)(a+c)i(b+d)=(a2c2)+(b2d2)+i(abad+bccdab+bcad+cd)(a+c)2+(b+d)2\frac{z-w}{z+w}=\frac{(a-c)+i(b-d)}{(a+c)+i(b+d)} \times \frac{(a+c)-i(b+d)}{(a+c)-i(b+d)} =\frac{\left(a^2-c^2\right)+\left(b^2-d^2\right)+i(a b-a d+b c-c d-a b+b c-a d+c d)}{(a+c)^2+(b+d)^2} Real part, (a2c2)+(b2d2)(a+c)2+(b+d)2=a2+b2c2d2(a+c)2+(b+d)2 \frac{\left(a^2-c^2\right)+\left(b^2-d^2\right)}{(a+c)^2+(b+d)^2}=\frac{a^2+b^2-c^2-d^2}{(a+c)^2+(b+d)^2} As, z=wa2+b2=c2+d2|z|=|w| \Rightarrow a^2+b^2=c^2+d^2 Hence real part =0=0