Mission
home

4.4 Random Variables

Q1

Topic
4.4 Random Variables
Tag
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/10
Question Text
The continuous random variable XX has a probability density function given by f(x)={ksin(πx12),0x12}f(x)=\left\{k \sin \left(\frac{\pi x}{12}\right), 0 \leq x \leq 12\right\} (a) Find the value of aa, if k=πak=\frac{\pi}{a} where aZ+a \in \mathbb{Z}^{+}
Total Mark
4
Correct Answer
24
Explanation
na
Mark Scheme
k012sin(πx12)dx=1k[12πcos(πx12)]012=1k(12π+12π)=1\begin{aligned} & k \int_0^{12} \sin \left(\frac{\pi x}{12}\right) d x=1 \\ & k\left[-\frac{12}{\pi} \cos \left(\frac{\pi x}{12}\right)\right]_0^{12}=1 \\ & k\left(\frac{12}{\pi}+\frac{12}{\pi}\right)=1 \end{aligned} Rearranging gives k=π24k=\frac{\pi}{24} Answer: 24
Question Text
(b) By considering the graph of f(x)f(x) write down (i) the mean of XX; Total Mark: 1 Correct Answer: 6 Explanation: na Mark Scheme: na (ii) the median of XX; Total Mark: 1 Correct Answer: 6 Explanation: na Mark Scheme: na (iii) the mode of XX Total Mark: 1 Correct Answer: 6 Explanation: na Mark Scheme: na
Question Text
(c) State the interquartile range of XX.
Total Mark
6
Correct Answer
4
Explanation
na
Mark Scheme
Tip 1: To find the first quartile, set the area as 14\frac{1}{4} π240nsin(πx12)dx=π24[12πcos(πx12)]0nπ24[12π(cos(nπ12)1)]=1412cos(nπ12)+12=14cos(nπ12)=12n=4\begin{gathered} \frac{\pi}{24} \int_0^n \sin \left(\frac{\pi x}{12}\right) d x=\frac{\pi}{24}\left[-\frac{12}{\pi} \cos \left(\frac{\pi x}{12}\right)\right]_0^n \\ \frac{\pi}{24}\left[-\frac{12}{\pi}\left(\cos \left(\frac{n \pi}{12}\right)-1\right)\right]=\frac{1}{4} \\ -\frac{1}{2} \cos \left(\frac{n \pi}{12}\right)+\frac{1}{2}=\frac{1}{4} \\ \cos \left(\frac{n \pi}{12}\right)=\frac{1}{2} \\ n=4 \end{gathered} So, Q1=4,Q3=8IQR=4\begin{gathered} Q_1=4, Q_3=8 \\ I Q R=4 \end{gathered} Answer: 4
Question Text
(d) Calculate P(X4) P(X ≥ 4) (a) 0.7 (b) 0.75 (c) 0.8 (d) 0.85
Total Mark
1
Correct Answer
b
Explanation
na
Mark Scheme
P(X4)P(X ≥ 4) = 0.75 Answer: B

Q2

Topic
4.4 Random Variables
Tag
Random variables Discrete Expectation Variance Continuous Mode Median Mean Standard deviation Probability density function Probability mass function Linear Transformations Interquartile Range
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/9
Question Text
A continuous random variable TT has probability density function ff defined by f(t)={3t,2t4}f(t)=\{|3-t|, 2 \leq t \leq 4\} The interquartile range of TT can be written as aba-\sqrt{b} where a,bZ+a, b \in Z^{+}. Find the value of a+ba+b.
Total Mark
5
Correct Answer
4
Explanation
na
Mark Scheme
2q13tdt=14\int_2^{q_1}|3-t| d t=\frac{1}{4} As q1<3q_1<3 [3tt22]2q1=14\left[3 t-\frac{t^2}{2}\right]_2^{q_1}=\frac{1}{4} 3×q1q1226+2=142q1212q1+17=012±1441364=12±84=6±22\begin{gathered} 3 \times q_1-\frac{q_1^2}{2}-6+2=\frac{1}{4} \\ 2 q_1^2-12 q_1+17=0 \\ \frac{12 \pm \sqrt{144-136}}{4}=\frac{12 \pm \sqrt{8}}{4}=\frac{6 \pm \sqrt{2}}{2} \end{gathered} As q1>3q_1>3 q1=6+22q_1=\frac{6+\sqrt{2}}{2} By symmetry q3=1022q3q1=4222=22\begin{gathered} q_3=\frac{10-\sqrt{2}}{2} \\ q_3-q_1=\frac{4-2 \sqrt{2}}{2}=2-\sqrt{2} \end{gathered} Answer: 4

Q3

Topic
4.4 Random Variables
Tag
Source
M19-TZ1-P1-4(HL)
Question Text
The probability density function of the random variable X is defined as f(x)={cosx,0xπ2}f(x)=\left\{\cos x, 0 \leq x \leq \frac{\pi}{2}\right\} Find E(X)\mathrm{E}(\mathrm{X}). [multiple choice] (a) 12\frac{1}{2} (b) 1 (c) π4\frac{\pi}{4} (d) π21\frac{\pi}{2}-1
Total Mark
5
Correct Answer
d
Explanation
na
Mark Scheme
Integration by parts 0π2xcosxdx=[xsinx]0π/20π2sinxdx=[xsinx+cosx]0π2=π21\begin{gathered} \int_0^{\frac{\pi}{2}} x \cos x d x=[x \sin x]_0^{\pi / 2}-\int_0^{\frac{\pi}{2}} \sin x d x \\ =[x \sin x+\cos x]_0^{\frac{\pi}{2}} \\ =\frac{\pi}{2}-1 \end{gathered} Answer: D

Q4

Topic
4.4 Random Variables
Tag
Random variables Continuous Probability density function
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/10
Question Text
The random variable X has probability density function f given by f(x)f(x) = {k(π - arccosxarccos⁡x) 0 ≤ x ≤1 where kk is a positive constant. (a) State the mode of X .
Total Mark
1
Correct Answer
1
Explanation
na
Mark Scheme
arccos1=0 Answer: 1
Question Text
(b) By considering the value of arcos⁡xdx find the value of k (a) 1π1\frac{1}{\pi -1} (b) 1π2\frac{1}{\pi -2} (c) 2π1\frac{2}{\pi -1} (d) 2π2\frac{2}{\pi -2}
Total Mark
1
Correct Answer
a
Explanation
na
Mark Scheme
attempt at integration by parts dudx=11x2,dvdx=1arcosxdx=xarccosx+x1x2dx=xarccosx1x2+c01(πarccosx)dx=[πxxarccosx+1x2]01=π1\begin{gathered} \frac{d u}{d x}=-\frac{1}{\sqrt{1-x^2}}, \frac{d v}{d x}=1 \\ \int \operatorname{arcos} x d x=x \arccos x+\int \frac{x}{\sqrt{1-x^2}} d x \\ =x \arccos x-\sqrt{1-x^2}+c \\ \int_0^1(\pi-\arccos x) d x=\left[\pi x-x \arccos x+\sqrt{1-x^2}\right]_0^1 \\ =\pi-1 \end{gathered} As 01k(πarcsinx)dx=1\int_0^1 k(\pi-\arcsin x) d x=1 k(π1)=1k=1π1\begin{gathered} k(\pi-1)=1 \\ k=\frac{1}{\pi-1} \end{gathered} Answer: A