Mission
home

4.4 Random Variables

Random variables
Discrete
Expectation
Variance
Continuous
Mode
Median
Mean
Standard deviation
Probability density function
Probability mass function
Linear Transformations
Interquartile range
Random Variable
Definition
Discrete random variables
A random variable assigns numbers to the possible outcomes of a random experiment. A discrete random variable, XX, has a finite or countably infinite set of distinct values. Discrete probability distributions are representable in a table due to its categorical nature. The probabilities must add up to 1. The probability distribution of a discrete random variable describes the probabilities associated with each value. For a random variable XX with possible values {x1,x2,...,xnx_1,x_2,...,x_n} and corresponding probabilities {p1,p2,...,pnp_1,p_2,...,p_n}: • 0pi10\leq p_i\leq 1i=1npi=1\sum_{i=1}^np_i=1 Example: If P(X)=x2+1P(X)=\frac x{2+1}for x=1,2,3,4x=1,2,3,4, then P(X)P(X) is a valid probability mass function.
Expectation (Mean)
The expected value  E(X)E(X) of a discrete random variable XX with values xix_i and probabilities pip_i​: E(X)=i=1nxipiE(X)=\sum _{i=1}^nx_ip_i​ E(X)E(X) is the mean of the probability distribution of XX, denoted μ\mu.
Variance
Var(X)Var(X) measures the spread of the random variable around its mean: Var(X)=i=1npi(xiμ)2Var(X)=\sum_{i=1}^np_i(x_i-\mu)^2 Alternatively: Var(X)=E(X2)(E(X))2Var(X)=E(X^2)-(E(X))^2 Standard deviation σ=Var(X)\sigma=\sqrt{Var(X)}
Linear transformations
E(aX+b)=aE(X)+bE(aX+b)= aE(X) + bE(X+Y)=E(X)+E(Y)E(X + Y) = E(X) + E(Y)Var(aX+b)=a2Var(X)Var(aX+b) = a^2Var(X)Var(X+Y)=Var(X)+Var(Y)Var(X + Y) = Var(X) + Var(Y) if XX and YY are independent. • σ(X)=aσ(X)\sigma(X) = |a|\sigma(X)
Random Variable
Definition
Continuous random variables
A random variable XX is continuous if its cumulative distribution function is continuous. If we have: FX(x)=xfX(t)dtF_X(x)=\int_{-∞}^xf_X(t) dt fXf_X is the probability density function (PDF) of XX. Note that PDF and PMF are fundamentally different objects, as PDFs can be greater than 1. Below, for simplicity, we denote PDF as f(x)f(x). A continuous random variable XX can take any value within an interval [a,b][a,b]. PDF f(x)f(x) describes the probability distribution: • P(cXd)=cdf(x)dxP(c\leq X\leq d)=\int_c^df(x)dxf(x)0f(x)\geq 0 for all xxabf(x)dx=1\int_a^bf(x)dx=1
Mode, median, mean
Mode: The value xx at which f(x)f(x) is maximum. Median: The value mm such that amf(x)dx=12\int_a^mf(x)dx=\frac 12​. Mean (Expected Value): μ=E(X)=abxf(x)dx\mu =E(X)=\int_a^bxf(x)dx
Variance and standard deviation
Variance: σ2=Var(X)=ab(xμ)2f(x)dx=abx2f(x)dxμ2\sigma^2=Var(X)=\int_a^b(x-\mu)^2f(x)dx=\int_a^bx^2f(x)dx-\mu^2 Standard deviation: σ=Var(X)\sigma=\sqrt{Var(X)}​