Mission
home

2.3 Transformation

Q1

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/6
Question Text
Consider the graphs of y=xy=|x| and y=x+by=-|x|+b, where bZ+b \in Z+. Given that the graphs enclose a region of area 8 square units, find the value of bb.
Total Mark
5
Correct Answer
4
Explanation
n/a
Mark Scheme
Step 1: Consider what's given In this case, sketching the graph to visualize the given equation helps.
Mark Scheme
Important thing to note is that when x<0,x=xx<0,|x|=-x and when x>0,x=xx>0,|x|=x, thus the graph flips once xx becomes positive. Step 2: Combine the given information Combine the given area, and the area found using the equations (i.e. use the variable bb) As the area enclosed looks like two symmetrical triangles, the base length and the height should be found. Base length =b=b The coordinate of the intersection x+b=x-x+b=x, so x=b2x=\frac{b}{2} Height =b2=\frac{b}{2} Area enclosed =2×12×b×b2=b22=8=2 \times \frac{1}{2} \times b \times \frac{b}{2}=\frac{b^2}{2}=8 So b=4b=4

Q2

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/11 b,e
Question Text
Consider the functionf(x)=1x23x+2,xR,x2,x1. f(x)=\frac{1}{x^2-3 x+2}, x \in R, x \neq 2, x \neq 1. Sketch the graph of y=f(x)y=f(|x|)
Total Mark
4
Correct Answer
(b)
Explanation
n/a
Mark Scheme
As f(x)=f(x)f(-x)=f(x) the function should be symmetrical across the yy-axis. The graph of f(x)f(|x|) where x<0x<0 is the mirror image of f(x)f(x) where x>0x>0.

Q3

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M17/5/MATHL/HP1/ENG/TZ2/XX/9
Question Text
Consider the function f(x)=x2a2,xRf(x)=x^2-a^2, x \in R where aa is a positive constant. Graph the equation y=1f(x)y=\left|\frac{1}{f(x)}\right|.
Total Mark
5
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Graph is symmetrical across the yy-axis, and is above the xx-axis. The graph has two vertical asymptotes x=a,x=a.x=a, x=-a.

Q4

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M15-TZ1-P1-9(HL)
Question Text
The functions ff and gg are defined by f(x)=3x+π4,xRf(x)=3 x+\frac{\pi}{4}, x \in R and g(x)=2sinx+3,xRg(x)=2 \sin x+3, x \in R. (a) The range gf(x)g \circ f(x) can be written as agf(x)ba \leq g \circ f(x) \leq b where a,bZa, b \in \mathbb{Z}. Find the value of a+ba+b.
Total Mark
2
Correct Answer
6
Explanation
n/a
Mark Scheme
gf(x)=g(f(x))=2sin(3x+π4)+3g \circ f(x)=g(f(x))=2 \sin \left(3 x+\frac{\pi}{4}\right)+3 Since 1sinθ+1-1 \leq \sin \theta \leq+1 the range is, 1gf(x)51 \leq g \circ f(x) \leq 5 $$ Thus, a+b=6a+b=6.
Question Text
(b) Select the solution to gf(x)=5 g∘f(x)=5. (A) 3π12\frac{3 \pi}{12} (B) 11π12\frac{11 \pi}{12} (C) 17π12\frac{17 \pi}{12} (D) 25π12\frac{25 \pi}{12}
Total Mark
2
Correct Answer
(d)
Explanation
n/a
Mark Scheme
2sin(3x+π4)+3=5sin(3x+π4)=1x=π12+2nπ2 \sin \left(3 x+\frac{\pi}{4}\right)+3=5 \\ \sin \left(3 x+\frac{\pi}{4}\right)=1 \\ x=\frac{\pi}{12}+2 n \pi
Question Text
(c) The graph of y=gf(x)y=g \circ f(x) can be obtained by applying four transformations to the graph of y=sinxy=\sin x as listed below Stretch scale factor aa parallel to yy-axis (vertically). Vertical translation of bb units up Stretch scale factor 1c\frac{1}{c} parallel to xx axis (horizontally) Horizontal translation of πd\frac{\pi}{d} to the left. Given that a,b,c,dZa, b, c, d \in \mathbb{Z}, compute a+b+c+da+b+c+d
Total Mark
3
Correct Answer
12
Explanation
n/a
Mark Scheme
From (a), gf(x)=g(f(x))=2sin(3x+π4)+3g \circ f(x)=g(f(x))=2 \sin \left(3 x+\frac{\pi}{4}\right)+3 Thus, 2+3+3+4=122+3+3+4=12

Q5

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M15-TZ2-P1-10(HL)
Question Text
(a) Sketch the graph of y=f(x)y=f(x), indicating clearly any asymptotes and points of intersection with the xx and yy axes.
Total Mark
4
Correct Answer
(a)
Explanation
n/a
Mark Scheme
x-intercept at (0,0)(0, 0), f(x)>0f(x) > 0, when x>1x > 1
Question Text
(b) Find an expression for f1(x)f^{-1}(x). (A) f1(x)=xx3f^{-1}(x)=\frac{x}{x-3} (B) f1(x)=x13xf^{-1}(x)=\frac{x-1}{3 x} (C) f1(x)=x13xf^{-1}(x)=\frac{x-1}{3 x} (D) f1(x)=x3x1f^{-1}(x)=\frac{x}{3 x-1}
Total Mark
4
Correct Answer
(a)
Explanation
n/a
Mark Scheme
Take the inverse of f(x)=3xx1f(x)=\frac{3 x}{x-1} x=3yy1x(y1)=3yy(x3)=xy=xx3x=\frac{3 y}{y-1} \\ x(y-1)=3 y \\ y(x-3)=x \\ y=\frac{x}{x-3}
Question Text
(c) Find the sum of the values of xx for which f(x)=f1(x)f(x)=f^{-1}(x).
Total Mark
3
Correct Answer
4
Explanation
n/a
Mark Scheme
xx3=3xx1x(x1)=3x(x3)x(2x8)=0x=0 or 4\frac{x}{x-3}=\frac{3 x}{x-1} \\ x(x-1)=3 x(x-3) \\ x(2 x-8)=0 \\ x=0 \text { or } 4
Question Text
The solution to the inequality f(x)<2|f(x)| < 2 can be written as a<x<b/ca < x < b/c where aa is an integer and b,b, cc are positive integers in lowest terms. Compute the value of b+cab + c - a. [4] 4
Total Mark
4
Correct Answer
0
Explanation
n/a
Mark Scheme
n/a

Q6

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/1
Question Text
The function ff is defined by f(x)=1x,x0.f(x)=\frac{1}{x}, x \neq 0. The graph of the function y=g(x)y=g(x) is obtained by applying the following transformation to the graph of y=f(x):y=f(x): A horizontal translation of 3 units to the right; A vertical translation of 2 units up (a) Which is the correct expression for g(x)g(x) ? (A) g(x)=1x2+3g(x)=\frac{1}{x-2}+3 (B) g(x)=1x+2+3g(x)=\frac{1}{x+2}+3 (C) g(x)=1x3+2g(x)=\frac{1}{x-3}+2 (D) g(x)=1x+3+2g(x)=\frac{1}{x+3}+2
Total Mark
3
Correct Answer
(b)
Explanation
n/a
Mark Scheme
g(x)=1x3+2g(x)=\frac{1}{x-3}+2
Question Text
(b) The two asymptotes of g(x)g(x) can be written as x=ax = a and y=by = b where a,bZ+a, b ∈ ℤ+. Find a+ba + b.
Total Mark
2
Correct Answer
5
Explanation
n/a
Mark Scheme
x=3x=3 , y=2y=2 Thus, a+b=5a + b = 5

Q7

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M13-TZ2-P1-12(HL)
Question Text
The function ff is defined by f(x)=2x3x+2f(x)=\frac{2 x-3}{x+2}, with domain D={x:3x5}D=\{x:-3 \leq x \leq 5\}. (a) Express f(x)f(x) in the form A+Bx+2A+\frac{B}{x+2}, where AA and BZB \in Z. Find the sum of AA and BB .
Total Mark
2
Correct Answer
-5
Explanation
n/a
Mark Scheme
f(x)=2x3x+2=2x+47x+2=27x+2f(x)=\frac{2 x-3}{x+2}=\frac{2 x+4-7}{x+2}=2-\frac{7}{x+2} Hence, the sum of AA and BB is 27=52-7=-5.
Question Text
(b) The range of f can be expressed as p,qp, q. Find the sum of pp and qq.
Total Mark
2
Correct Answer
10
Explanation
n/a
Mark Scheme
Considering the domain of function ff, we can calculate the range of ff. f(3)=9f(-3)=9 f(5)=1f(5)=1 Since, p=1p=1 and q=9q=9, the sum of pp and qq is equal to 10.
Question Text
(c) (i) Find an expression for f1(x)f^{-1}(x). (A) f1(x)=2x+32xf^{-1}(x)=\frac{2 x+3}{2-x} (B) f1(x)=2x32+xf^{-1}(x)=\frac{2 x-3}{2+x} (C) f1(x)=x+322xf^{-1}(x)=\frac{x+3}{2-2 x} (D) f1(x)=x32+2xf^{-1}(x)=\frac{x-3}{2+2 x} Total Mark: (a) Correct Answer: 3 Explanation: n/a Mark Scheme: Take the inverse, x=2y3y+2x(y+2)=2y3y(2x)=2x+3y=2x+32xx=\frac{2 y-3}{y+2} \\ x(y+2)=2 y-3 \\ y(2-x)=2 x+3 \\ y=\frac{2 x+3}{2-x} (ii) Select the option that accurately plots the graph of y=f(x)y=f(x), and the graph of y=f1(x)y=f^{-1}(x).
Question Text
Total Mark: 8 Correct Answer: (b) Explanation: n/a Mark Scheme: xx-intercept is non zero. The functions are mirror images across the line y=xy=x
Question Text
(d) (i) On a different diagram, sketch the graph of y=f(x)y=f(|x|) where xDx \in D.
Question Text
Total Mark: (d) Correct Answer: 3 Explanation: n/a Mark Scheme: To draw the graph, apply the absolute value of xx and calculate the yy coordinate accordingly. (ii) Select all solutions of the equation f(x)=1f(|x|)=1. (A) 10 (B) -7 (C) 7 (D) 5 (E) -5 Total Mark: 4 Correct Answer: 5, -5 Explanation: n/a Mark Scheme: Attempt to solve f(x)=1f(|x|)=1. 27x+2=1x=5x=5 or 52-\frac{7}{|x|+2}=1 \\ |x|=5 \\ x=-5 \text { or } 5

Q8

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M19/5/MATHL/HP1/ENG/TZ1/XX/10 c
Question Text
The function px is defined by p(x)=x32x2+7x+17 p(x) = x³ - 2x² + 7x + 17 where xRx ∈ R. Write down the transformation that will transform the graph of y=p(x)y = p(x) onto the graph ofy=64x332x2+28x17 y = 64x³ - 32x² + 28x - 17. (A) Translate four units to the left (B) Translate four units to the right (C) Stretch parallel to the x-axis, scale factor 0.25 (D) Stretch parallel to the x-axis, scale factor 4
Total Mark
3
Correct Answer
(d)
Explanation
n/a
Mark Scheme
For this question, we need to find the transformation that will transform p(x)p(x) to yy. When we stretch p(x)p(x) parallel to the xx -axis by the scale factor of 0.25 , y=p(4x)y=(4x)32(4x)2+7(4x)+17y=64x332x2+28x+17y=p(4 x) \\ y=(4 x)^3-2(4 x)^2+7(4 x)+17 \\ y=64 x^3-32 x^2+28 x+17 Hence, the answer is option C.

Q9

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/3
Question Text
Consider the function f(x)=x43x24x+8,xRf(x)=x⁴ - 3x² - 4x + 8,x∈R. The graph of is translated three units to the right to form the function g(x)g(x). Express g(x)g(x) in the form ax4+bx3+cx2+dx+eax⁴ + bx³ + cx² + dx+e where a,b,c,d,eZa, b, c, d, e ∈ Z and find the sum of a,b,c,d,a, b, c, d, and ee.
Total Mark
5
Correct Answer
47
Explanation
n/a
Mark Scheme
Since g(x)g(x) is formed when f(x)f(x) is translated three units to the right, we can express g(x)g(x) in terms of f(x)f(x) like the following, g(x)=f(x3)g(x)=(x3)43(x3)24(x3)+8g(x)=(x3)43(x3)24(x3)+8g(x)=f(x-3) \\ g(x)=(x-3)^4-3(x-3)^2-4(x-3)+8 \\ g(x)=(x-3)^4-3(x-3)^2-4(x-3)+8 First, attempt to expand (x3)4(x-3)^4 (x3)4=x44(3x3)+6(32x2)4(33x)+34=x412x3+54x2108x+81(x-3)^4 =x^4-4\left(3 x^3\right)+6\left(3^2 x^2\right)-4\left(3^3 x\right)+3^4 \\=x^4-12 x^3+54 x^2-108 x+81 Next, substitute the expression into g(x)g(x) g(x)=x412x3+54x2108x+813(x26x+9)4x+12+8=x412x3+51x294x+101g(x)=x^4-12 x^3+54 x^2-108 x+81-3\left(x^2-6 x+9\right)-4 x+12+8 \\ =x^4-12 x^3+51 x^2-94 x+101 Hence, the sum of all the coefficients is equal to 112+5194+101=471-12+51-94+101=47

Q10

Topic
2.3 Transformation
Tag
Transformation; Functions; Domain Range; Asymptotes; Graph; Reflection; Scale factor; Translation; Stretch;
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/11
Question Text
Consider the functions ff and gg defined by f(x)=lnx,xR\{x0}f(x)=\ln |x|, x \in R \backslash\{x \neq 0\} and g(x)=lnxkg(x)=\ln |x-k|, xR\{xk}x \in R \backslash\{x \neq k\}, where kR,k>3k \in R, k>3. (a) State the range of gg. (A) g(x)R,g(x)<0g(x) \in R, g(x)<0 (B) g(x)R,g(x)>2g(x) \in R, g(x)>2 (C) g(x)R,g(x)<2g(x) \in R, g(x)<2 (D) g(x)Rg(x) \in R
Total Mark
1
Correct Answer
(d)
Explanation
n/a
Mark Scheme
The range of g(x)g(x) includes all real numbers.
Question Text
(b) Sketch the graphs of y=f(x)y=f(x) and y=g(x)y=g(x) on the same axes, clearly stating the points of intersection with any axes.
Total Mark
6
Correct Answer
(a)
Explanation
n/a
Mark Scheme
The vertical asymptote of g(x)g(x) is located at x=3x=3 since the domain of g(x)g(x) includes all real numbers except 3. In addition, the xx-intercept of g(x)g(x) is located at x=2x=2 and x=4x=4 and the xx-intercept of f(x)f(x) is located at x=1x=-1 and x=1x=1. Hence, the correct graph of f(x)f(x) and g(x)g(x) is presented in A.
Question Text
The graphs of ff and gg intersect at the point PP. (c) Find the coordinates of PP. (A) P(k2,lnk2)P\left(\frac{k}{2},-\ln \frac{k}{2}\right) (B) P(k2,lnk2)P\left(-\frac{k}{2}, \ln \frac{k}{2}\right) (C) P(k2,lnk2)P\left(\frac{k}{2}, \ln \frac{k}{2}\right) (D) P(k,lnk)P(-k, \ln k)
Total Mark
2
Correct Answer
(c)
Explanation
n/a
Mark Scheme
Since point PP is the intersection of graph ff and gg, the xx-coordinate can be found by ln(x+k)=ln(x)x+k=xx=k2,y=ln(k2)\ln (-x+k)=\ln (x) \\ -x+k=x \\ x=\frac{k}{2}, y=\ln \left(\frac{k}{2}\right)