Mission
home

2.1 Functions

Q1

Topic
2.1 Functions
Tag
Domain; Range; Functions; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/6
Question Text
(a) Sketch the graph of y=13xx3y=\frac{1-3 x}{x-3}, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.
Total Mark
4
Correct Answer
a
Explanation
na
Mark Scheme
Vertical asymptote : x x=3 y=13xx3=38x3y=\frac{1-3 x}{x-3}=-3-\frac{8}{x-3} Horizontal asymbotote: yy=-3 y=13×003=23=23y=\frac{1-3 \times 0}{0-3}=\frac{-2}{-3}=\frac{2}{3} yy-intercept: (0,23)\left(0, \frac{2}{3}\right) Answer: a
Question Text
(b) The solution to the inequality 13xx3\left|\frac{1-3 x}{x-3}\right|<2, can be written as aa<xx<bc\frac{b}{c}, where a,b,ca, b, c \in ZZ. Find the value of a+b+ca+b+c.
Total Mark
5
Correct Answer
7
Explanation
na
Mark Scheme
Consider the visual interpretation of the graph,
13xx3=2,x=75(13xx3)=2,x=5\begin{gathered} \frac{1-3 x}{x-3}=2, x=\frac{7}{5} \\ -\left(\frac{1-3 x}{x-3}\right)=2, x=-5 \end{gathered} Thus, 5<x<75a+b+c=5+7+5=7\begin{gathered} -5<x<\frac{7}{5} \\ a+b+c=-5+7+5=7 \end{gathered} Answer: 7

Q2

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/11a
Question Text
Consider the function fn(x)=2n(sin2x)(cos2x)(cos4x)(cos2nx),nZ+f_n(x)=2^n(\sin 2 x)(\cos 2 x)(\cos 4 x) \ldots\left(\cos 2^n x\right), n \in Z^{+}. Determine whether fnf_n is an odd or even function.
Total Mark
4
Correct Answer
odd
Explanation
na
Mark Scheme
Applying the sine double angle identity, a pattern can be noticed fn(x)=2n(sin2x)(cos2x)(cos4x)(cos2nx)=2(sin(2nx))f_n(x)=2^n(\sin 2 x)(\cos 2 x)(\cos 4 x) \ldots\left(\cos 2^n x\right)=2\left(\sin \left(2^n x\right)\right) Since sin(θ)=sin(θ)\sin (\theta)=-\sin (-\theta), It is an odd function.

Q3

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M17/5/MATHL/HP1/ENG/TZ1/XX
Question Text
Consider the function f(x)=1x2+4x+3,xR,x3,x1f(x)=\frac{1}{x^2+4 x+3}, x \in R, x \neq-3, x \neq-1 (a) Select the equations of the asymptotes (select all that apply) (a) x=3x=3 (b) x=1 x=-1 (c) x=3 x=-3 (d) y=0y=0 (e) y=1 y=1
Total Mark
3
Correct Answer
b,c,d
Explanation
na
Mark Scheme
f(x)=1x2+4x+3=1(x+3)(x+1)f(x)=\frac{1}{x^2+4 x+3}=\frac{1}{(x+3)(x+1)} Vertical asymptotes: x=3,x=1x=-3, x=-1 Horizontal aytsmptote: y=0y=0 Answer: B, C, D
Question Text
(b) Select the correct coordinates of the local maximum. (a) (2,1) (b) (-2,1) (c) (2,-1) (d) (-2,-1)
Total Mark
3
Correct Answer
d
Explanation
na
Mark Scheme
x2+4x+3=(x+2)21f(x)=1(x+2)21\begin{gathered} x^2+4 x+3=(x+2)^2-1 \\ f(x)=\frac{1}{(x+2)^2-1} \end{gathered} Local maximum: (2,1)(-2,-1) Answer: D
Question Text
(c) Hence select the correct graphical representation of f(x)f(x)
Total Mark
5
Correct Answer
a
Explanation
na
Mark Scheme
na

Q4

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
Question Text
The function f is defined by f(x)=3x3+4f(x) = 3x³ + 4 where 2x2-2 ≤ x ≤ 2 (a) What is the range of ff? (a) 0f(x)40 ≤ f(x) ≤ 4 (b) 2f(x)2-2 ≤ f(x) ≤ 2 (c) 2f(x)7-2 ≤ f(x) ≤ 7 (d) 20f(x)28-20 ≤ f(x) ≤ 28
Total Mark
2
Correct Answer
d
Explanation
na
Mark Scheme
As 2x2-2 ≤ x ≤ 2, lowest is f(2),f(-2), and largest is f(2)f(2) Thus, 20f(x) -20 ≤ f(x) ≤ 28 Answer: (D)
Question Text
(b) Find an expression forf1(x) f⁻¹(x). (a) y=x4y=x-4 (b) y=x+4 y=x+4 (c) y=x43y=\sqrt[3]{x-4} (d) y=x+43 y=\sqrt[3]{x+4}
Total Mark
2
Correct Answer
c
Explanation
na
Mark Scheme
Take the inverse, x=3y3+4x = 3y³ + 4 y=x43y = \sqrt[3]{x-4} Answer: (C)
Question Text
(c) Write down the domain of f1f⁻¹ can be written as axb-a ≤ x ≤ b where a,ba, b Z+Z^+. Compute the value of a+ba + b
Total Mark
2
Correct Answer
48
Explanation
na
Mark Scheme
The domain of an inverse function is the range of the original function, thus, 20x -20 ≤ x ≤ 28 Answer: 48

Q5

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes; Irrational; Graph
Source
N16-TZ0-P1-3(HL)
Question Text
A rational function is defined by f(x)=a+cxbf(x)=a+\frac{c}{x-b} where a,b,cZa, b, c \in Z and xRx \in R. The following diagram represents the graph of y=f(x)y=f(x) Using the information on the graph, (a) State the value of aa
Total Mark
1
Correct Answer
2
Explanation
na
Mark Scheme
Horizontal asymptote is y=2y=2, which represents the value of aa Answer: 2
Question Text
(b) State the value of bb.
Total Mark
1
Correct Answer
1
Explanation
na
Mark Scheme
Horizontal asymptote is x=1x = 1 represented by bb Answer: 1
Question Text
(c) Find the value of c.
Total Mark
2
Correct Answer
2
Explanation
na
Mark Scheme
Use the coordinate (0, 0) on the graph, f(0)f(0) = 0 2 + c(01)\frac{c}{(0-1)} = 0 c = 2 Answer: 2

Q6

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes; Irrational; Graph
Source
M16-TZ1-P1-7(HL)
Question Text
(a) Which graph accurately represent the curve y=9x4y=\left|\frac{9}{x-4}\right| and the line y=x+4y=x+4? [multiple choice]
Total Mark
3
Correct Answer
(A)
Explanation
na
Mark Scheme
Vertical asymptote: x=4x = 4 y-intercept: (0, 4), (0,94\frac{9}{4}) Answer: (A)
Question Text
(b) The equation x+4=9x4x+4=\left|\frac{9}{x-4}\right| has three unique solutions that can be written as a,b,ca, \sqrt{b},-\sqrt{c}, where a,b,cZ+a, b, c \in \mathbb{Z}^{+}. Find a+b+c\mathrm{a}+\mathrm{b}+\mathrm{c}.
Total Mark
5
Correct Answer
19
Explanation
na
Mark Scheme
The question can be separated into two cases, Case 1: x>4x>4 As 9x4\frac{9}{x-4} is positive, x+4=9x4x216=9x2=25\begin{gathered} x+4=\frac{9}{x-4} \\ x^2-16=9 \\ x^2=25 \end{gathered} So x=5x=5 Case 2: x<5x<5 As 9x4\frac{9}{x-4} is negative, x+4=9x4x216=9x2=7\begin{gathered} x+4=-\frac{9}{x-4} \\ x^2-16=-9 \\ x^2=7 \end{gathered} So x=±7x= \pm \sqrt{7} a=5a=5 b=7b=7 c=7\mathrm{c}=7 Thus, a+b+c=19a+b+c=19

Q7

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M16-TZ2-P1-2(HL)
Question Text
The function ff is defined as f(x)=2x+1x1,xR,x1f(x)=\frac{2 x+1}{x-1}, x \in R, x \neq-1. Which graph accurately represents y=f(x)y=f(x)?
Total Mark
3
Correct Answer
B
Explanation
na
Mark Scheme
Vertical asymptote: x=1x=1 Horizontal asymptote: f(x)=2x+1x1=2+3x1f(x)=\frac{2 x+1}{x-1}=2+\frac{3}{x-1} So, y=2y=2 xx - intercept: 2x+1=0x=0.5\begin{gathered} 2 x+1=0 \\ x=-0.5 \end{gathered} So, (-0.5,0)

Q8

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M15-TZ1-P1-5(HL)
Question Text
The functions ff and gg are defined by f(x)=ax4+bx+c,xRf(x)=a x^4+b x+c, x \in R and g(x)=pcosx+qx+r,xRg(x)=p \cos x+q x+r, x \in R where a,b,c,p,q,ra, b, c, p, q, r are real constants. (a) Given that ff is an odd function, find the value of aa.
Total Mark
2
Correct Answer
0
Explanation
na
Mark Scheme
f(x)=f(x)f(x) = -f(-x) ax4+bx+ ax⁴ + bx + c =(a(x)4+b(x)+c) -(a(-x)⁴ + b(-x) + c) 2ax 2ax⁴ = 0 Thus, a = 0 Answer: 0
Question Text
(b) Given that g is an even function, find the value of qq.
Total Mark
2
Correct Answer
0
Explanation
na
Mark Scheme
g(- x) = g(x) p⁡ cos(- x) + qx + r = p cos(- ⁡x) - qx + r As cos x = cos (-x) 2qx = 0 Thus, q = 0 A

Q9

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/11a,b
Question Text
The function ff is defined as f(x)=e2x+1,xRf(x)=e^{2 x+1}, x \in R. (a) Find f1(x)f^{-1}(x). (a) y=ex21y=e^{\frac{x}{2}-1} (b) y=ex21y=\frac{e^x}{2}-1 (c) y=lnx1y=\ln x-1 (d) y=12(lnx1)y=\frac{1}{2}(\ln x-1)
Total Mark
2
Correct Answer
D
Explanation
na
Mark Scheme
(a) Take the inverse, x=e2y+1lnx=2y+1y=12(lnx1)\begin{gathered} x=e^{2 y+1} \\ \ln x=2 y+1 \\ y=\frac{1}{2}(\ln x-1) \end{gathered} Answer: D
Question Text
(b) The domain of f1(x)f⁻¹(x) can be written as x>ax > a where aZ.a ∈ ℤ. Compute the value of aa.
Total Mark
2
Correct Answer
0
Explanation
na
Mark Scheme
As logarithms can’t have a negative value inside, x> x > 0 Answer: 0
Question Text
The function gg is defined as g(x)=lnx,xR+g(x)=\ln x, x \in R^{+}. The graph of y=g(x)y=g(x) and the graph of y=f1(x)y=f^{-1}(x) intersect at the point PP . (c) Find the coordinates of PP (a)(1,e1)\left(-1, e^{-1}\right) (b) (34,e12)\left(\frac{-3}{4}, e^{\frac{-1}{2}}\right) (c) (e1,1)\left(e^{-1},-1\right) (d) (e12,34)\left(e^{\frac{-1}{2}}, \frac{-3}{4}\right)
Total Mark
4
Correct Answer
C
Explanation
na
Mark Scheme
Consider the given information, lnx=12(lnx1)2lnx=lnx1lnx=1x=e1y=f1(e1)=12(lne11)y=1\begin{gathered} \ln x=\frac{1}{2}(\ln x-1) \\ 2 \ln x=\ln x-1 \\ \ln x=-1 \\ x=e^{-1} \\ y=f^{-1}\left(e^{-1}\right)=\frac{1}{2}\left(\ln e^{-1}-1\right) \\ y=-1 \end{gathered} Coordinates of PP are (e1,1)\left(e^{-1},-1\right) Answer: C

Q10

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M14/5/MATHL/HP1/ENG/TZ2/XX/14
Question Text
Consider the following functions: h(x)=arctan(2x),xRg(x)=14x,xR,x0h(x)=\arctan (2 x), \quad x \in R \quad g(x)=\frac{1}{4 x}, \quad x \in R, \quad x \neq 0 (a) Which graph accurately represents y=h(x)y=h(x) ?
Total Mark
2
Correct Answer
C
Explanation
na
Mark Scheme
As the range of arctan(2x)arctan(2x) is, π2-\frac{\pi }{2}arctan(2x)arctan(2x)π2\frac{\pi }{2} Answer: C
Question Text
Given that f(x)=h(x)+hg(x)=cf(x) = h(x) + h∘g(x) = c, for some constant cc, (b) Find the value oof c. a) 0 b) 52\frac{5}{2} c) π2\frac{\pi }{2} d) 5π2\frac{5\pi }{2}
Total Mark
3
Correct Answer
c
Explanation
na
Mark Scheme
(b) f(x)=arctan(2x)+arctan(12x)f(x)=\arctan (2 x)+\arctan \left(\frac{1}{2 x}\right) As its given that f(x)f(x) is constant f(12)=arctan(1)+arctanf(12)=π4+π4f(12)=π2\begin{gathered} f\left(\frac{1}{2}\right)=\arctan (1)+\arctan \\ f\left(\frac{1}{2}\right)=\frac{\pi}{4}+\frac{\pi}{4} \\ f\left(\frac{1}{2}\right)=\frac{\pi}{2} \end{gathered} Thus c=π2c=\frac{\pi}{2} Answer: C
Question Text
Nigel states that f is an odd function and Tom argues that f(x)f(x) is an even function. (c) By considering whether the f(x)f(x) is an odd function or an even function, find the value of f(x)f(x) for x<0x < 0. a) 0 b) 52-\frac{5}{2} c) π2-\frac{\pi }{2} d) 5π2\frac{5\pi }{2}
Total Mark
3
Correct Answer
C
Explanation
na
Mark Scheme
 (c) f(x)=arctan(2x)+arctan(12x)f(x)=arctan(2x)arctan(12x)f(x)=f(x)\begin{gathered} \text { (c) } f(-x)=\arctan (-2 x)+\arctan \left(\frac{-1}{2 x}\right) \\ f(-x)=-\arctan (2 x)-\arctan \left(\frac{1}{2 x}\right) \\ f(-x)=-f(x) \end{gathered} therefore ff is an odd function Thus, f(x)=π2f(x)=-\frac{\pi}{2} when x<0x<0 Answer: C

Q11

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
N13-TZ0-P1-3(HL)
Question Text
The diagram below shows a sketch of the graph of y=f(x)y=f(x).
a) Which graph represents y=f1(x)y=f^{-1}(x)?
Total Mark
2
Correct Answer
B
Explanation
na
Mark Scheme
Mirror with regards to y=xy = x.
Question Text
(b) The range of f1(x)f⁻¹(x) can be written as f1(x)>kf⁻¹(x) > k where kkZ+ℤ^+. Compute the value of kk.
Total Mark
1
Correct Answer
2
Explanation
na
Mark Scheme
Range is f1(x)> f⁻¹(x) > 2 Answer: 2
Question Text
(c) Given that f(x)=axbf(x) = ax - b , x>2x > 2, a,ba,bZ+ℤ^+ (i) find the value of aa Total Mark : 2 Correct Answer: 1 Explanation: na Mark Scheme: na (ii) Find the value of bb. Total Mark: 2 Correct Answer: 2 Explanation: na Mark Scheme : xx-intercept: (3,0)(3,0) ln(3ab)ln⁡(3a - b) = 0 3ab=13a - b = 1 Asymptote at xx = 2 2ab2a - b = 0 aa = 1, bb = 2 (i) Answer: 1 (ii) Answer: 2

Q12

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M13-TZ2-P1-9(HL)
Question Text
The function ff is given by f(x)=2x+12x2xf(x)=\frac{2^x+1}{2^x-2^{-x}}, for x>0x>0. The solution to the equation f(x)=3f(x)=3 can be written as log2(ab)\log _2\left(\frac{a}{b}\right) where aa and bb are positive integers in lowest terms. Find the value of a+ba+b. [4]
Total Mark
4
Correct Answer
5
Explanation
na
Mark Scheme
2x+12x2x=32x+1=2(2x2x)2×22x2x3=0\begin{gathered} \frac{2^x+1}{2^x-2^{-x}}=3 \\ 2^x+1=2\left(2^x-2^{-x}\right) \\ 2 \times 2^{2 x}-2^x-3=0 \end{gathered} Use the substitution y=2xy=2^x 2y2y3=(2y3)(y+1)y=32\begin{gathered} 2 y^2-y-3=(2 y-3)(y+1) \\ y=\frac{3}{2} \end{gathered} Thus, x=log2(32)x=\log _2\left(\frac{3}{2}\right) Answer: 5

Q13

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
N19/5/MATHL/HP1/ENG/TZ1/XX/10 b,c
Question Text
Considerf(x)=2x8x24,2<x<2\operatorname{Consider} f(x)=\frac{2 x-8}{x^2-4},-2<x<2 (a) For the graph of y=f(x)y=f(x), (i) Find the yy- coordinate of the yy- intercept Total Mark: 1 Correct Answer: 2 Explanation: na Mark Scheme: f(0)=2f(0)=2 Answer: 2 (ii) Find the number of xx-intercepts. Total Mark: 2 Correct Answer: 2 Explanation: na Mark Scheme: 2x10=02x - 10 = 0 x=5x = 5 Outside the domain so no xx-intercepts. Answer: 0 (iii) Which graph accurately represents y=f(x)y=f(x)?
Total Mark: 2 Correct Answer: B Explanation: na Mark Scheme: na

Q14

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/5
Question Text
(a) Select the graph of y=2x−4x−3y=\frac{2 x-4}{x-3}y=x−32x−4​
Total Mark
5
Correct Answer
A
Explanation
na
Mark Scheme
na
Question Text
(b) Consider the function f(x)=2x4x3f(x)=\sqrt{\frac{2 x-4}{x-3}}. The domain of ff can be written as xa,x>bx \leq a, x>b for integers aa and bb. Write down (i) the value of aa Total mark : 1 Correct Answer: 2 Explanation: na Mark Scheme: na (ii) the value of bb Total Mark: 1 Correct Answer: 3 Explanation: na Mark Scheme: f(x)>0f(x) > 0 By considering the graph, x2x ≤ 2, x>3x > 3 (i) Answer: 2 (ii) Answer: 3

Q15

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/9 a
Question Text
Consider the functions ff and gg defined on the domain 0<x<π20<x<\frac{\pi}{2} by f(x)=3cos2xf(x)=3 \cos 2 x and g(x)=411cosxg(x)=4-11 \cos x The xx -coordinate of the point of intersection of the two graphs can be written as sin1(ab)\sin ^{-1}\left(\frac{a}{b}\right) where aa and bb are integers in lowest terms. Compute the value of a+ba+b.
Total Mark
6
Correct Answer
4
Explanation
na
Mark Scheme
Equate the functions to find the intersection point, 3cos2x=13sinx23 \cos 2 x=13 \sin x-2 Using the double angle identity for cos 3(12sin2x)=13sinx26sin4x+13sinx5=0(3sinx1)(2sinx+5)=0sinx=13x=sin1(13)\begin{gathered} 3\left(1-2 \sin ^2 x\right)=13 \sin x-2 \\ 6 \sin ^4 x+13 \sin x-5=0 \\ (3 \sin x-1)(2 \sin x+5)=0 \\ \sin x=\frac{1}{3} \\ x=\sin ^{-1}\left(\frac{1}{3}\right) \end{gathered} Answer: 4

Q16

Topic
2.1 Functions
Tag
Functions; Domain; Range; Composite functions; Inverse functions; Reciprocal functions; Asymptotes ; Irrational; Graph
Source
M18/5/MATHL/HP1/ENG/TZ2/XX/10
Question Text
The function ff is defined by f(x)=ax+bcx+df(x)=\frac{a x+b}{c x+d}, for xR,xdcx \in R, x \neq-\frac{d}{c}. (a) Find the inverse function f1f^{-1} Options: (A) f1(x)=cx+dax+bf^{-1}(x)=\frac{c x+d}{a x+b} (B) f1(x)=cxdabxf^{-1}(x)=\frac{c x-d}{a-b x} (C) f1(x)=dx+bcx+af^{-1}(x)=\frac{d x+b}{c x+a} (D) f1(x)=dxbacxf^{-1}(x)=\frac{d x-b}{a-c x}
Total Mark
3
Correct Answer
D
Explanation
na
Mark Scheme
(a) Take the inverse, x=ay+bcy+dx(cy+d)=ay+by(acx)=dxby=dxbacx\begin{gathered} x=\frac{a y+b}{c y+d} \\ x(c y+d)=a y+b \\ y(a-c x)=d x-b \\ y=\frac{d x-b}{a-c x} \end{gathered} Answer: (D)
Question Text
(b) State the domain of f1f^{-1} (A) xba,xRx \neq \frac{-b}{a}, x \in R (B) xab,xRx \neq \frac{a}{b}, x \in R (C) xac,xRx \neq \frac{-a}{c}, x \in R (D) xac,xRx \neq \frac{a}{c}, x \in R
Total Mark
1
Correct Answer
D
Explanation
na
Mark Scheme
acx0a - cx ≠ 0 xa/c,(xR)x ≠ a/c , (x∈R) Answer: (D)
Question Text
The function g is defined by g(x)=3x2x1,xR,x2g(x)=\frac{3 x-2}{x-1}, x \in R, x \neq 2. (c) i. g(x)\quad g(x) can be written in the form A+Bx+1A+\frac{B}{x+1} where A,BA, B are constants. Compute the value of A+BA+B. Total Mark: 2 Correct Answer: 4 Explanation: na Mark Scheme: g(x)=3(x1)+1x1=3+1x1g(x)=\frac{3(x-1)+1}{x-1}=3+\frac{1}{x-1} Answer: 4 ii. Sketch the graph of y=g(x)y=g(x). State the equations of any asymptotes and the coordinates of any intercepts with the axes. [multiple choice]
Total Mark: 3 Correct Answer: B Explanation: na Mark Scheme:
Vertical asymptote x=1x=1 Horizontal asymptote y=3y=3 yy-intercept (0,2)(0,2) Answer: B