Mission
home

2.2 Exponents and Logarithms

Tags
Exponents
Logarithms
Graph
Asymptotes
Domain
Range
Functions
Exponential rules
Logarithm rules
Exponential is an inverse operation of logarithm; i.e. ax=bx=logaba^x=b ⇒ x = \log_ ab.
Therefore, exponential function and logarithm function are an inverse of each other.
Exponentials:
There are few exponential rules to be aware of:
aman=am+na^m · a^n = a^{m+n}
aman=amn\frac {a^m}{a^n}=a^{m-n}
anm=anma^{\frac nm}= \sqrt [m] {a^n}
an=1ana^{-n}=\frac 1{a^n}
Treat the exponentials like a variable in factorization and expansion.
For the general form f(x)=kabx+c+df(x) =k · a^{bx+c}+d, we have:
1.
Horizontal asymptote: y=dy=d
2.
Vertical asymptote: x=cbx=-\frac cb
3.
Domain: {xxRx | x∈ ℝ}
4.
For the sign of kk, the range changes:
a.
k>0k>0 ⇒ {yy<dy | y <d}
b.
k<0k<0 ⇒ {yy>dy | y > d}
To solve exponential equations, equate the exponents with the same base numbers.
Figure 2.3.1 Exponential functions with different base values
Logarithms
There are few logarithm rules to be aware of:
1.
logab+logac=logabc\log _ab+\log_ac=\log _abc
2.
logablogac=logabc\log_ab-\log_ac=\log_a{\frac bc}
3.
logab=logcblogca\log_ab=\frac{\log_cb}{\log_ca}
4.
logambn=nmlogab\log_a{_mb^n}=\frac nm\log_ab
Treat the logarithms like a variable in factorization and expansion.
For the general form f(x)=kloga(bx+c)+df(x) = k\log_a(bx+c)+d, we have:
1.
Vertical asymptote: x=cbx=-\frac cb
2.
Range: {yyRy | y∈ ℝ}
3.
For the sign of b, the domain changes:
a.
b>0b>0 ⇒ {xx>cbx | x> -\frac cb}
b.
b<0b<0 ⇒ {xx<cbx | x < -\frac cb}
Figure 2.3.2 Logarithm functions with different base values
To solve logarithmic equations, equate the argument with the same base numbers.
*Note that for natural constant ee, we write: logex=lnx\log_ex=\ln x.