Mission
home

2.2 Exponents and Logarithms

Q1

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/1
Question Text
Solve the equation log2(x+3)+log2(x3)=4 \log _2(x+3)+\log _2(x-3)=4
Total Mark
5
Correct Answer
5
Explanation
n/a
Mark Scheme
Step 1: Simplify by applying logarithmic properties In this case two logarithms are being added, log2((x+3)×(x3))=log2(x29)=4\log _2((x+3) \times(x-3))=\log _2\left(x^2-9\right)=4 The equation can be further simplified by converting into its exponential form. Notice it becomes a quadratic. x29=24x^2-9=2^4, rearranging gives, x2=25x^2=25 As x+3x+3, x3>0x-3>0, x=5x=5

Q2

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/1
Question Text
Find the solution of log2xlog27=3+log23\log _2 \mathrm{x}-\log _2 7=3+\log _2 3
Total Mark
4
Correct Answer
168
Explanation
n/a
Mark Scheme
Rearrange the equation to collect all log terms, log2xlog27log23=3log2x21=3\log _2 x-\log _2 7-\log _2 3=3 \\ \log _2 \frac{x}{21}=3 Convert to exponential form, x21=23x=168\frac{x}{21}=2^3 \\ x=168

Q3

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
N16-TZ0-P1-7(HL)
Question Text
The equation 2x+24x=32^{x+2}-4^x=3 has two solutions. Given that one solution can be written aslogab\log _a b where aa and bb are prime numbers (i) compute the value of aa Total Mark: 3 Correct Answer: 2 Explanation: n/a Mark Scheme: Use the substitution 2x=A2^x=A 4AA2=3A24A3=0(A3)(A1)=0A=1 or 34 A-A^2=3 \\ A^2-4 A-3=0 \\ (A-3)(A-1)=0 \\ A=1 \text { or } 3 So, 2x=1 or 3x=0 or log232^x=1 \text { or } 3 \\ x=0 \text { or } \log _2 3 (ii) compute the value of bb Total Mark: 2 Correct Answer: 3 Explanation: n/a Mark Scheme: Use the substitution 2x=A2^x=A 4AA2=3A24A3=0(A3)(A1)=0A=1 or 34 A-A^2=3 \\ A^2-4 A-3=0 \\ (A-3)(A-1)=0 \\ A=1 \text { or } 3 So, 2x=1 or 3x=0 or log232^x=1 \text { or } 3 \\ x=0 \text { or } \log _2 3

Q4

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M16-TZ1-P1-6(HL)
Question Text
Integer values mm and nn satisfy m+nlog34=10log912m+n \mathrm{ log}_3 4=10 \log _9 12. (i) compute the value of mm Total Mark: 3 Correct Answer: 5 Explanation: n/a Mark Scheme: Rearrange to collect the log terms, m=10log912nlog34m=5log312nlog34m=log31254nm=10 \log _9 12-n \log _3 4 \\ m=5 \log _3 12-n \log _3 4 \\ m=\log _3 12^5 4^{-n} Rewrite in exponential form, 3m=1254n3m4n=35453^m=12^5 4^{-n} \\ 3^m 4^n=3^5 4^5 (ii) compute the value of nn Total Mark: 2 Correct Answer: 5 Explanation: n/a Mark Scheme: Rearrange to collect the log terms, m=10log912nlog34m=5log312nlog34m=log31254nm=10 \log _9 12-n \log _3 4 \\ m=5 \log _3 12-n \log _3 4 \\ m=\log _3 12^5 4^{-n} Rewrite in exponential form, 3m=1254n3m4n=35453^m=12^5 4^{-n} \\ 3^m 4^n=3^5 4^5

Q5

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M15-TZ2-P1-9(HL)
Question Text
Given that log2x=4logx2 \log _2 x=4 \log _x 2, find the integer solution.
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
Using change of base, logx2=log22log2x\log _x 2=\frac{\log _2 2}{\log _2 x} So, log2x=4log2x(log2x)2=4 \log _2 x=\frac{4}{\log _2 x} \\ \left(\log _2 x\right)^2=4 To obtain the integer solution, log2x=2x=4 \begin{gathered} \log _2 x=2 \\ x=4 \end{gathered}

Q6

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M14/5/MATHL/HP1/ENG/TZ1/X/3
Question Text
Consider k=log24×log46×log68××log332\mathrm{k}=\log _2 4 \times \log _4 6 \times \log _6 8 \times \ldots \times \log _3 32. Given that kZk \in Z, find the value of kk.
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
Using change of base, k=log24log22×log26log24×log28log26××log232log230 k=\frac{\log _2 4}{\log _2 2} \times \frac{\log _2 6}{\log _2 4} \times \frac{\log _2 8}{\log _2 6} \times \ldots \times \frac{\log _2 32}{\log _2 30} Notice that the values cancel out, k=log232log22=log232=5k=\frac{\log _2 32}{\log _2 2}=\log _2 32=5

Q7

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M14/5/MATHL/HP1/ENG/TZ2/XX/2
Question Text
The solution to the equation 2x1=63x2^{x-1}=6^{3 x} can be written as lnalnb\frac{\ln a}{\ln b} where a,bZ+a, b \in \mathbb{Z}^{+}. Find the value of a+ba+b.
Total Mark
5
Correct Answer
110
Explanation
n/a
Mark Scheme
2x+1=(2×3)3x2x+1=23x×33x22x+1=33xln(22x+1)=ln(33x)(2x+1)ln2=(3x)ln3x(3ln3+2ln2)=ln2x=ln2ln1082^{x+1}=(2 \times 3)^{3 x} \\ 2^{x+1}=2^{3 x} \times 3^{3 x} \\ 2^{-2 x+1}=3^{3 x} \\ \ln \left(2^{-2 x+1}\right)=\ln \left(3^{3 x}\right) \\ (-2 x+1) \ln 2=(3 x) \ln 3 \\ x(3 \ln 3+2 \ln 2)=\ln 2 \\ x=\frac{\ln 2}{\ln 108}

Q8

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
N13-TZ0-P1-9(HL)
Question Text
One solution to the equation xlogx=10(logx)3x^{\log x}=10^{(\log x)^3} is 11 , find another solution.
Total Mark
5
Correct Answer
10
Explanation
n/a
Mark Scheme
xlogx=(10logx)(logx)2xlogx=x(logx)2logx=(logx)2logx=1x=10x^{\log x}=\left(10^{\log x}\right)^{(\log x)^2} \\ x^{\log x}=x^{(\log x)^2} \\ \log x=(\log x)^2 \\ \log x=1 \\ x=10

Q9

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M19/5/MATHL/HP1/ENG/TZ2/XX/7
Question Text
2+log22x=log23+2log2y1+log5x=log5(7y+1) 2+\log _2 2 \mathrm{x}=\log _2 3+2 \log _2 \mathrm{y} \\ 1+\log _5 \mathrm{x}=\log _5(7 \mathrm{y}+1) (a) compute the value of xx Total Mark: 4 Correct Answer: 3 Explanation: n/a Mark Scheme: Simplify each equation, log24x=log23y24x=3y2log55x=log5(7y+1)5x=7y+1 \log _2 4 x=\log _2 3 y^2 \\ 4 x=3 y^2 \\ \log _5 5 x=\log _5(7 y+1) \\ 5 x=7 y+1 Replacing xx, 154y2=7y+115y228y4=0(y2)(15y+2=0)y=2 \frac{15}{4} y^2=7 y+1 \\ 15 y^2-28 y-4=0 \\ (y-2)(15 y+2=0) \\ y=2 As 5x=7y+15 x=7 y+1 x=3 x=3 (b) compute the value of yy Total Mark: 3 Correct Answer: 2 Explanation: n/a Mark Scheme: Simplify each equation, log24x=log23y24x=3y2log55x=log5(7y+1)5x=7y+1 \log _2 4 x=\log _2 3 y^2 \\ 4 x=3 y^2 \\ \log _5 5 x=\log _5(7 y+1) \\ 5 x=7 y+1 Replacing xx, 154y2=7y+115y228y4=0(y2)(15y+2=0)y=2 \frac{15}{4} y^2=7 y+1 \\ 15 y^2-28 y-4=0 \\ (y-2)(15 y+2=0) \\ y=2

Q10

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/5
Question Text
Find the integer solution of the equation (lnx)2(ln3)(lnx)=2(ln3)2(\ln x)^2-(\ln 3)(\ln x)=2(\ln 3)^2 .
Total Mark
6
Correct Answer
9
Explanation
n/a
Mark Scheme
(lnx)2(ln3)(lnx)2(ln3)2=0(lnx2ln3)(lnx+ln3)=0lnx=ln9x=9\begin{aligned} & (\ln x)^2-(\ln 3)(\ln x)-2(\ln 3)^2=0 \\ & (\ln x-2 \ln 3)(\ln x+\ln 3)=0 \\ & \ln x=\ln 9 \\ & x=9\end{aligned}

Q11

Topic
2.2 Exponents and Logarithms
Tag
Exponents; Logarithms; Graph; Asymptotes; Domain; Range; Functions; Exponential rules; Logarithm rules
Source
M18/5/MATHL/HP1/ENG/TZ2/XX/11
Question Text
Find the solution to the equation log2x+log4x+log8x+log64x=6\log _2 x+\log _4 x+\log _8 x+ \log _{64}x =6
Total Mark
5
Correct Answer
8
Explanation
n/a
Mark Scheme
Using change of base, log2x+log4x+log8x+log64x=log2x+log2xlog24+log2xlog28+log2xlog264\log _2 x+\log _4 x+\log _8 x+\log _{64} x=\log _2 x+\frac{\log _2 x}{\log _2 4}+\frac{\log _2 x}{\log _2 8}+\frac{\log _2 x}{\log _2 64} Simplify, log2x+log2x2+log2x3+log2x6=2log2x=6log2x=3x=8\log _2 x+\frac{\log _2 x}{2}+\frac{\log _2 x}{3}+\frac{\log _2 x}{6}=2 \log _2 x=6 \\ \log _2 x=3 \\ x=8