Mission
home

2.4 Polynomials

Q1

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N17/5/MATHL/HP1/ENG/TZ0/XX/3
Question Text
(a) Consider the polynomial q(x)=2x35x2kx+20q(x) = 2x³ - 5x² - kx + 20. Given that q(x)q(x) has a factor (x4)(x - 4), find the value of kk.
Total Mark
3
Correct Answer
17
Explanation
n/a
Mark Scheme
In this case, the factor of the polynomials is already given. q(4)=0q(4)=0 So, 2×435×424k+20=02 \times 4³ - 5 \times 4² - 4k + 20 = 0 Rearrange to give, k=17k=17
Question Text
(b) Hence or otherwise, factorise q(xq(x)) as a product of linear factors. Select all the factors. (a) (x4)(x - 4) (b) (x+1)(x + 1) (c) (x1)(x-1) (d) (2x+5)(2x+5) (e) (2x+3)(2x+3)
Total Mark
3
Correct Answer
(a), (c), (d)
Explanation
n/a
Mark Scheme
If we factorize the given polynomial, we get the following result. q(x)=(x4)(x1)(2x+5)q(x) = (x - 4)(x - 1)(2x + 5) Hence, the correct options are (a), (c), (d).

Q2

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M17/5/MATHL/HP1/ENG/TZ1/XX/12
Question Text
Consider the polynomial P(z)=z5+5z4+14z3+22z2+17z+5,zCP(z)=z^5+5 z^4+14 z^3+22 z^2+17 z+5, z \in C. The polynomial can be written in the form P(z)=(z+1)3(z2+bz+c)P(z)=(z+1)^3\left(z^2+b z+c\right). Find the sum of the value of bb and the value of cc.
Total Mark
5
Correct Answer
7
Explanation
n/a
Mark Scheme
Expand the polynomial form to find the value of bb and cc. (z+1)3(z2+bz+c)=z5+5z4+14z3+22z2+17z+5(z3+3z2+3z+1)(z2+bz+c)=z5+5z4+14z3+22z2+17z+5b=2,c=5(z+1)^3\left(z^2+b z+c\right)=z^5+5 z^4+14 z^3+22 z^2+17 z+5 \\ \left(z^3+3 z^2+3 z+1\right)\left(z^2+b z+c\right)=z^5+5 z^4+14 z^3+22 z^2+17 z+5 \\ b=2, c=5 Hence, the sum of bb and cc is equal to 7 .

Q3

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N16-TZ0-P1-5(HL)
Question Text
The quadratic equation x24kx+(k1)=0x^2-4 k x+(k-1)=0 has roots α\alpha and β\beta such that α2+β2=16\alpha^2+\beta^2=16. Without solving the equation, the real number kk can be equal to 78-\frac{7}{8} and nn. Find the value of nn. Without solving the equation, find the possible values of the real number kk.
Total Mark
4
Correct Answer
1
Explanation
n/a
Mark Scheme
We can express the sum and product of α\alpha and β\beta in terms of kk. α+β=4kαβ=k1\alpha+\beta=4 k \\ \alpha \beta=k-1 Next, we can express α2+β2\alpha^2+\beta^2 in terms of kk by using the sum and product of α\alpha and β\beta. α2+β2=(α+β)22αβ=16k22k+2=164k22k2=0\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta=16 k^2-2 k+2=16 \\ 4 k^2-2 k-2=0 Hence, if we attempt to solve the quadratic equation. k=1,78k=1,-\frac{7}{8} The other real number kk is equal to 1 .

Q4

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N16-TZ0-P1-10(HL)
Question Text
A given polynomial function is defined as f(x)=a0+a1x+a2x2++anxnf(x)=a_0+a_1 x+a_2 x^2+\ldots+a_n x^n. The roots of the polynomial equation f(x)=0f(x)=0 are consecutive terms of a geometric sequence with a common ratio of 13\frac{1}{3} and first term 2 . Given that an1=80a_{n-1}=-80 and an=27a_n=27 (a) Find the degree of the polynomial
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
The sum of the roots of the polynomial can be expressed using the following formula: an1an=8027-\frac{a_{n-1}}{a_n}=\frac{80}{27} We can express the sum of the roots of the polynomial in different terms by the geometric sequence summation formula. 2(1(13)n113)=80271(13)n=8081(13)n=181n=42\left(\frac{1-\left(\frac{1}{3}\right)^n}{1-\frac{1}{3}}\right)=\frac{80}{27} \\ 1-\left(\frac{1}{3}\right)^n=\frac{80}{81} \\ \left(\frac{1}{3}\right)^n=\frac{1}{81} \\ n=4
Question Text
(b) The value of a0a_0 can be expressed as pq\frac{p}{q}. Find the sum of pp and qq.
Total Mark
2
Correct Answer
35
Explanation
n/a
Mark Scheme
To find the value of a0a_0 we can use the product of the roots of the polynomial. (1)na0an=2×23×29×227(-1)^n \frac{a_0}{a_n}=2 \times \frac{2}{3} \times \frac{2}{9} \times \frac{2}{27} If we take into account that an=27a_n=27, a0=27×2×23×29×227a0=827a_0=27 \times 2 \times \frac{2}{3} \times \frac{2}{9} \times \frac{2}{27} \\ a_0=\frac{8}{27} The sum of pp and qq is equal to 35 .

Q5

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M15-TZ1-P1-7(HL)
Question Text
Let p(x)=3x5+6x425x315x2+81x+36,xRp(x)=3x⁵ + 6x⁴ - 25x³ - 15x² + 81x + 36 , x ∈ R. For the polynomial equation p(x)=0p(x) = 0, state (a) (i) The sum of the roots Total Mark: 2 Correct Answer: -2 Explanation: n/a Mark Scheme: The sum of the roots of p(x)p(x) can be expressed using the following formula: an1a=63=2-\frac{a_{n-1}}{a}=-\frac{6}{3}=-2 (ii) The product of the roots Total Mark: 2 Correct Answer: -12 Explanation: n/a Mark Scheme: The product of the roots of p(x)p(x) can be calculated using the following formula: (1)na0an=363=12(-1)^n \frac{a_0}{a_n}=-\frac{36}{3}=-12
Question Text
(b) A new polynomial is defined by q(x)=p(x+4)q(x) = p(x + 4). Find the sum of the roots of the equation q(x)=0q(x) = 0.
Total Mark
2
Correct Answer
-22
Explanation
n/a
Mark Scheme
The roots of q(x)q(x) are each 4 less than the roots of p(x)p(x) since p(x+4)p(x+4) is the same as shifting p(xp(x) towards the left by 4 units. Hence, the sum of the roots of q(x)q(x) is 24×5=22-2 - 4 × 5 = -22

Q6

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M15-TZ2-P1-12(HL)
Question Text
The cubic equation x3+px2+qx+c= x³ + px² + qx + c = 0 has roots α,β,γα,β,γ. By expanding (xα)(xβ)(xγ)(x - α)(x - β)(x - γ) show that ... (a) Which of the following is equal to α+β+γα + β + γ? (a) p (b) -p (c) c (d) -c Total Mark : 2 Correct Answer : b Explanation : na Mark Scheme : (a) (b) (c) Given the three roots α,β,γ\alpha, \beta, \gamma, we can expand the polynomial. x3+px2+qx+c=(xα)(xβ)(xγ)=(x2(α+β)x+αβ)(xγ)=x3(α+β+γ)x2+(αβ+βγ+γα)xαβγ\begin{aligned} x^3+p x^2+q x+c & =(x-\alpha)(x-\beta)(x-\gamma) \\ & =\left(x^2-(\alpha+\beta) x+\alpha \beta\right)(x-\gamma) \\ & =x^3-(\alpha+\beta+\gamma) x^2+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma \end{aligned} If we compare the coefficients, (a) α+β+γ=p\alpha+\beta+\gamma=-p (b) αβ+βγ+γα=q\alpha \beta+\beta \gamma+\gamma \alpha=q (ic) αβγ=c\alpha \beta \gamma=-c Answer: (a) B, (b) A, (c) D (b) Which of the following is equal to αβ+βγ+γααβ + βγ + γα? (a) q (b) -q (c) c (d) -c Total Mark : 2 Correct Answer : a Explanation : na Mark Scheme : na (c) Which of the following is equal to c=αβγc = -αβγ? (a) p (b) -p (c) c (d) -c Total Mark : 2 Correct Answer : d Explanation: na Mark Scheme: na (d) It is now given that pp=-18 and qq=27 for parts (d) and (d) below. (i) In the case that the three roots α,β,γα,β,γ form an arithmetic sequence with a positive common difference. Find the value of the second largest root. Total Mark : 2 Correct Answer: 6 Explanation : na Mark Scheme : Using the information that the three roots form an arithmetic sequence, we can express the three roots as below: αd,α,α+dα - d, α, α + d We can deduce the value of smallest root by using the sum of the three roots αd+α+α+d=3α=18α - d + α + α + d = 3α = 18 Hence, the value of the second largest root α is equal to 6. Answer: 6 (ii) Hence determine the value of c. Total Mark : 3 Correct Answer : -270 Explanation : na Mark Scheme : na

Q7

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N14/5/MATHL/HP1/ENG/TZ0/XX/2
Question Text
The quadratic equation 2x214x+3=02 x^2-14 x+3=0 has roots α\alpha and β\beta. Another quadratic equation x2+px+q=0x^2+p x+q=0, p,qZp, q \in Z has roots 3α\frac{3}{\alpha} and 3β\frac{3}{\beta}. Find the sum of pp and qq.
Total Mark
5
Correct Answer
-7
Explanation
n/a
Mark Scheme
Consider the fact 3α+3β=p(3α)(3β)=q\begin{gathered} \frac{3}{\alpha}+\frac{3}{\beta}=-p \\ \left(\frac{3}{\alpha}\right)\left(\frac{3}{\beta}\right)=q \end{gathered} By using the sum and product of the roots, we can express the quadratic equation using α\alpha and β\beta. x2(3α+3β)x+(3α)(3β)=0x^2-\left(\frac{3}{\alpha}+\frac{3}{\beta}\right) x+\left(\frac{3}{\alpha}\right)\left(\frac{3}{\beta}\right)=0 To find the value of qq, (Using the formulae for the product of roots, αβ=32\alpha \beta=\frac{3}{2}.) q=9αβ=6q=\frac{9}{\alpha \beta}=6 To find the value of pp, (Using the formulae for the sum of the roots, α+β=7\alpha+\beta=7 ) p=(3α+3β)=3(α+β)αβ=3×732=14p=-\left(\frac{3}{\alpha}+\frac{3}{\beta}\right)=-\frac{3(\alpha+\beta)}{\alpha \beta}=-\frac{3 \times 7}{\frac{3}{2}}=-14 Hence, the sum of pp and qq is equal to -8 . Answer: -8

Q8

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M14/5/MATHL/HP1/ENG/TZ1/X/1
Question Text
When the polynomial x3 +ax+bx³ + ax + b is divided by (x3)(x - 3), the remainder is 32, and when divided by x+2x + 2, it is 7. Find the sum of aa and bb
Total Mark
5
Correct Answer
9
Explanation
n/a
Mark Scheme
na

Q9

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M14/5/MATHL/HP1/ENG/TZ1/X/4
Question Text
The equation 4x3+17x2+150x+3=a4 x^3+17 x^2+150 x+3=a has roots n1,n2n_1, n_2 and n3n_3. Given that n1+n2+n3+n1n2n3=0n_1+n_2+n_3+n_1 n_2 n_3=0, find the value of aa. [3]
Total Mark
3
Correct Answer
20
Explanation
n/a
Mark Scheme
n1+n2+n3=174n1n2n3=a34174+a34=0a=20\begin{aligned} & n_1+n_2+n_3=\frac{-17}{4} \\ & n_1 n_2 n_3=\frac{a-3}{4} \\ & \frac{-17}{4}+\frac{a-3}{4}=0 \\ & a=20 \end{aligned} Answer: 20

Q10

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M14/5/MATHL/HP1/ENG/TZ2/XX/4
Question Text
The roots of a quadratic equation 2x2+10x+1=02x² + 10x + 1 = 0 are αα and ββ. Without solving the equation (a) find the value of α2+β2α² + β².
Total Mark
3
Correct Answer
24
Explanation
n/a
Mark Scheme
Use the formulae for the sum and product of roots. α+β=5αβ=12\begin{gathered} \alpha+\beta=-5 \\ \alpha \beta=\frac{1}{2} \end{gathered} We can express α2+β2\alpha^2+\beta^2 in terms of α+β\alpha+\beta and αβ\alpha \beta, α2+β2=(α+β)22αβ\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta and substitute the values for the sum and product of the roots. α2+β2=(5)22(12)=24\alpha^2+\beta^2=(-5)^2-2\left(\frac{1}{2}\right)=24 Answer: 24
Question Text
(b) A quadratic equation with roots α2α² and β2β² can be expressed as Ax2+Bx+C=0Ax² + Bx + C = 0. Find the sum of A and B..
Total Mark
4
Correct Answer
-23
Explanation
n/a
Mark Scheme
Express the quadratic equation with roots α2\alpha^2 and β2\beta^2, (xα2)(xβ2)=x2(α2+β2)x+α2β2\left(x-\alpha^2\right)\left(x-\beta^2\right)=x^2-\left(\alpha^2+\beta^2\right) x+\alpha^2 \beta^2 We can find the coefficients by using the values from question (a) x2(α2+β2)x+(α+β)2=0x224x+(12)2=0x224x+142=0\begin{gathered} x^2-\left(\alpha^2+\beta^2\right) x+(\alpha+\beta)^2=0 \\ x^2-24 x+\left(\frac{1}{2}\right)^2=0 \\ x^2-24 x+\frac{1}{4}^2=0 \end{gathered} Hence, the sum of AA and BB is equal to -23 . Answer: -23

Q11

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N13-TZ0-P1-1(HL)
Question Text
The cubic polynomial 3x3 +px2 +qx53x³ + px² + qx - 5 has a factor (x+5)(x + 5) and leaves a remainder 40 when divided by (x+3)(x + 3). Find the sum of pp and qq.
Total Mark
5
Correct Answer
26
Explanation
n/a
Mark Scheme
When (x+5)(x+5) is a factor of the cubic polynomial, f(5)=375+25p5q5=025p5q=380f(-5) = -375 + 25p - 5q - 5 = 0 25p - 5q = 380 When (x+3)(x + 3) leaves a remainder of 40, f(3)=81+9p3q5=409p3q=126f(-3) = - 81 + 9p - 3q - 5 = 40 9p - 3q = 126 If we attempt to solve simultaneously, p=17p = 17 and q=9q = 9. Hence, the sum of p and q is equal to 26. Answer: 26

Q12

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M13-TZ1-P1-11(HL)
Question Text
Let q(x)=3x311x240x12q(x) = 3x³ - 11x² - 40x - 12. Given that x=6x = 6 is a zero of qq, find the product of all the solutions of 3x311x240x12=03x³ - 11x² - 40x - 12 = 0.
Total Mark
4
Correct Answer
4
Explanation
n/a
Mark Scheme
Factorise q(x)q(x) by (x6) (x - 6). q(x)=(x6)(3x2+7x+2)q(x)=(x - 6)(3x² + 7x + 2) Find the remaining roots by expressing q(x) in the factored form. q(x)=(x6)(3x+1)(x+2)q(x)=(x - 6)(3x + 1)(x + 2) The solutions of q(x)q(x) are x=6,x=13,x=2x = 6 , x = -13 , x = -2 . Hence, the product of the solutions is equal to 4. Answer: 4

Q13

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
N18/5/MATHL/HP1/ENG/TZ0/XX/8
Question Text
Consider the equation z4+az3+bz2+cz+d=0z^4+a z^3+b z^2+c z+d=0, where a,b,c,dRa, b, c, d \in R and zCz \in C. Two of the roots of the equation are log36\log _3 6 and i2i \sqrt{2} and the sum of all the roots is 3+log323+\log _3 2. Find the value of 4a+d+12=04 a+d+12=0.
Total Mark
7
Correct Answer
4
Explanation
n/a
Mark Scheme
i2-i \sqrt{2} is a root of the equation. Using the sum of roots, we can also deduce that 3+log32log363+\log _3 2-\log _3 6 is a root. To find the value of aa, we can use the sum of roots. a=3+log32a=3log32\begin{aligned} & -a=3+\log _3 2 \\ & a=-3-\log _3 2 \end{aligned} To find the value of dd, we can use the product of roots. (1)4d=2(log36)(i2)(i2)=4log36(-1)^4 d=2\left(\log _3 6\right)(i \sqrt{2})(-i \sqrt{2})=4 \log _3 6 Therefore, the value of 4a+d+124 a+d+12 is equal to 4(3log32)+4log36+12124log32+4log33+4log32+12=4\begin{gathered} 4\left(-3-\log _3 2\right)+4 \log _3 6+12 \\ -12-4 \log _3 2+4 \log _3 3+4 \log _3 2+12=4 \end{gathered} Hence, the answer is equal to 4. Answer: 4

Q14

Topic
2.4 Polynomials
Tag
Polynomials; Domain; Range; Functions; Asymptotes; Graph; Linear; Quadratics; Modulus; Discriminant
Source
M18/5/MATHL/HP1/ENG/TZ1/XX/1
Question Text
Let f(x) = x4 +px3 +qx+4f(x) = x⁴ + px³ + qx + 4 where p, qp, q are constants. The remainder when f(x)f(x) is divided by (x+2)(x + 2) is 7, and the remainder when f(x)f(x) is divided by (x1)(x - 1) is 1. Find the sum of pp and qq.
Total Mark
5
Correct Answer
15
Explanation
n/a
Mark Scheme
When (x+2)(x + 2) leaves a remainder of 7, f(2)=168p2q+4=26f(-2) = 16 - 8p - 2q + 4 = 26 8p2q=6-8p -2q = 6 When (x1)(x - 1) leaves a remainder of 40, f(1)=1+p+q+4=20f(1) = 1 + p + q + 4 = 20 p+q=15p + q = 15 If we attempt to solve simultaneously, p=6p = -6 and q=21q = 21. Hence, the sum of pp and qq is equal to 15. Answer: 15